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ABSTRACT: 

 

This paper introduces the interpretation meta knowledge model devised for the InterCloud platform. InterCloud is a remote sensing 

image interpretation platform designed to run on computer clusters or on cloud computing infrastructure. The system is capable of 

distributing data processing tasks, such as segmentation, feature extraction and classification procedures over the processing 

elements of a computer grid in a transparent way to the user. Moreover, InterCloud can exploit the potential scalability offered by 

commercial cloud computing infrastructure services, enabling the interpretation of very large remote sensing datasets in an efficient 

way. The proposed meta model comprises two types of knowledge: declarative and procedural. The former describes the 

characteristics of the classes of objects expected to be found in the scene to be interpreted, and the relationships among those classes. 

The latter describes the functions and procedures that should be applied over the data in order to achieve the desired interpretation. 

In the proposed knowledge model, the user expresses declarative knowledge through the definition of an ontology, so-called 

descriptive ontology, which conveys the formal naming and definition of the properties and interrelationships of the object classes in 

a particular application. Procedural knowledge is expressed by the so-called task ontology, which is represented by a directed graph, 

in which the nodes represent operations over the input images or over the segments generated by segmentation operations. Besides 

segmentation, crisp or fuzzy classification operations can be defined by the user. The graph edges define the data flow between 

operations, which are triggered by the control process as soon as their inputs are produced by the preceding operations. In this paper 

we illustrate the main components of the meta knowledge model through a theoretical application. 

 

 

1. INTRODUCTION 

To this date, many knowledge-based or cognitive systems 

(Sagerer et al., 1990; Liedtke et al., 1997; Bückner et al., 2001; 

Costa et al., 2010; Trimble, 2014) have been proposed for 

remote-sensing image interpretation. The main focus of those 

systems is the modelling of the classes of objects expected to be 

found in a scene through the explicit representation of prior 

knowledge about their spectral, morphological or topological 

characteristics.  

 

There are several advantages of embodying image 

understanding knowledge into explicit structures (Crevier and 

Lapage, 1997). First, knowledge can be easily added to a 

knowledge base, without modifying pre-existing rules. When 

laid out explicitly, knowledge can be more easily validated, 

since contradictions and omissions become apparent. 

Knowledge structures also favour interactive problem solution, 

providing a way to explore alternative means of extracting 

information from images. Last but not least, explicit represented 

knowledge provides for easier collaboration, for knowledge 

interchange among those tackling similar problems. 

 

Ontologies represent a way to explicitly specify domain 

conceptualizations (Gruber, 1993). In the remote sensing 

domain, ontologies have been used to describe the classes of 

objects of interest for particular applications, mostly intending 

to support feature extraction methods (Arvor et al., 2013). For 

example, Forestier et al. (2012) designed ontologies that 

represent urban features (e.g. house, garden, roads) and groups 

of urban features (e.g. urban blocks) in QuickBird imagery. 

Forestier et al. (2013) also presented a knowledge-based 

framework for remote sensing image interpretation of coastal 

areas. Kohli et al. (2012) developed an ontology dedicated to 

identifying informal settlements from remotely sensed imagery. 

Belgiu et al. (2014) developed ontologies of the objects to be 

identified in remote sensing data by means of machine learning 

techniques.  

 

In this work, we introduce the meta knowledge model devised 

for the InterCloud platform. InterCloud is a remote sensing 

image interpretation platform designed to run on computer 

clusters. InterCloud can exploit the potential scalability offered 

by commercial cloud computing infrastructure services, 

enabling the interpretation of very large remote sensing datasets 

in an efficient way. 

 

The proposed meta knowledge model comprises two types of 

knowledge: declarative and procedural. The former describes 

the characteristics of the classes of objects expected to be found 

in the scene to be interpreted, and the relationships among those 

classes. The latter describes the functions and procedures that 

should be applied over the data in order to produce the desired 

interpretation. 

 

In the proposed meta model, the user expresses declarative 

knowledge through the definition of an ontology, so-called 

descriptive ontology, which conveys the formal naming and 

definition of the properties and interrelationships of the object 

classes in a particular application. Such properties can include 

crisp or fuzzy descriptions of the related features values, which 

are used by the distributed interpretation control engine in the 



 

direct selection of image objects or in assigning class 

membership values to the objects. 

 

Procedural knowledge is expressed by the so-called task 

ontology, which is represented by a directed graph, in which the 

nodes represent operations over the input images or over the 

segments generated by segmentation operations. Besides 

segmentation, crisp or fuzzy classification operations can be 

defined by the user. The graph edges define the data flow 

between operations, which are triggered by the control process 

as soon as their inputs are produced by the preceding 

operations. 

 

2. INTERCLOUD OVERVIEW 

InterCloud is a remote sensing image interpretation platform 

designed to run on computer clusters or on cloud computing 

infrastructure. The system employs the MapReduce programing 

model (Dean et al., 2004) to distribute data processing tasks, 

such as segmentation (Happ et al., 2015), feature extraction and 

classification procedures (Ayma et al., 2015) over the 

processing elements of a computer grid in a transparent way to 

the user. Moreover, InterCloud can exploit the potential 

scalability offered by commercial cloud computing 

infrastructure services, enabling the interpretation of very large 

remote sensing datasets in an efficient way. InterCloud can be 

regarded as a redesign of InterIMAGE (Costa et al., 2010) 

conceived to process arbitrarily large datasets in a distributed 

fashion. 

 

Although the architecture of InterCloud has been described 

before (Ferreira et al., 2014), we recall some of its main aspects. 

The architecture is composed by three abstraction layers: the 

project definition layer, the image interpretation layer, and the 

distribution layer.  

 

The project definition layer supports the definition of all 

required information for the execution of an interpretation 

application. Such information can be described through 

semantic networks and dataflow graphs that represent 

processing chains. The first enables the description of the 

classes of objects expected to be found by the interpretation 

process, and the latter enables the description of the chain of 

operations that should be carried in the interpretation process, 

and that will be distributed over the processing elements in a 

transparent way to the end user. 

 

The interpretation layer comprises the algorithms and methods 

available in the platform. It is structured on a high-level 

programming language that hides the complexity of dealing 

directly with the distributed programming model. A user with 

conventional programming skills can embed new methods into 

this layer, so that the end user can select them in the project 

definition layer. Finally, the distribution layer is responsible for 

the distributed execution of the interpretation model.  

 

In the current implementation of InterCloud, the project 

definition layer lacks a graphical user interface (GUI), so that 

end user interaction is restricted by the fact that the user needs 

to describe the interpretation model through a traditional 

programming language (i.e., Java). Additionally, InterCloud 

lacks conceptually structured knowledge representation 

formalisms to guide the user in the definition of interpretation 

models, and that provide high level abstractions for the 

definition of such models, so that application domain experts 

can define complex models without the support of 

programmers. 

 

This work intends to fill this gap, by proposing knowledge 

representation abstractions based on the concept of ontologies. 

In the following we describe those formalisms, which are 

currently being considered in the implementation of 

InterCloud’s GUI. 

 

3. META KNOWLEDGE MODEL 

In this work we propose an ontology-based meta knowledge 

model for remote sensing image interpretation. In this section 

we define the basic components of the meta model and present 

some examples to illustrate such components in a simple, 

theoretical application. 

 

Firstly, what we understand by knowledge are facts and 

heuristics. Facts constitute the body of information available 

and heuristics are rules of good judgment, of plausible 

reasoning, that characterize expert-level decision making.  

 

In the case of object-based image interpretation, facts are related 

to image objects, which represent the occurrence of instances of 

object classes on the scene represented by an image. Image 

objects that belongs to a specific class share common 

characteristics, which are based on particular properties, which 

are related to features that can be measured or quantified. Such 

features may be associated to (i) statistics computed over 

spectral intensity values of the pixels that belong to the image 

objects, to (ii) to the shape of image objects, to (iii) topological 

relationships among objects of specific classes, and to (iv) 

temporal relationships among objects that occur in images 

acquired at different points in time. In any case, the description 

of the characteristics shared by objects of a specific class and 

the relationships among objects from different classes must be 

formally described in order to be processed by an automated 

procedure. We call such kind of knowledge descriptive 

knowledge. 

 

In this context, heuristics are associated to the way descriptive 

knowledge is used or processed, so as to find the location of 

image objects of the classes of interest, on a particular scene. 

This is associated to a different kind of knowledge, which has to 

do with the order of processing of tasks, which aim at 

measuring the properties of image objects and determining the 

association of the objects to specific classes. We call such kind 

of knowledge procedural knowledge. 

 

In our meta knowledge model, descriptive knowledge is 

explicitly represented through a so-called descriptive ontology, 

and procedural knowledge is represented through a task 

ontology. 

 

3.1. Descriptive Ontology 

In the proposed meta model, descriptive ontologies are 

represented by a graphical knowledge representation formalism, 

which is based on semantic networks (Sagerer and Niemann, 

1997). 

 

The nodes of the semantic network may represent either object 

classes or lingual descriptors. Lingual descriptors represent 

generic characteristics of the objects of a class. Lingual 

descriptors are defined loosely, in linguistic terms, which are 

qualitative and imprecise by nature. Such imprecision means 



 

that lingual descriptors cannot be actually computed by an 

automated process, so they need to be associated to features that 

can be quantitatively measured.  Therefore, each lingual 

descriptor must be associated to what we call a descriptor 

definition.  

 

A descriptor definition is composed by a set of measurable 

features, which are associated to corresponding fuzzy sets. 

Possibility values derived from the fuzzy sets can be combined 

by fuzzy operators, so that the computation of a descriptor will 

produce a single possibility value.  

 

As many lingual descriptors may be associated to an object 

class, lingual descriptors may also be combined through fuzzy 

operators. In this way, the possibility values associated to each 

lingual descriptor may be combined so as to produce a single 

membership value for an image object, which can be later used 

by a particular process identified in the task ontology, e.g., 

defuzzification or spatial conflict resolution. 

 

Figure 1 illustrates a simple descriptive ontology. The edges of 

the semantic network have different semantic meanings. When 

the edges connect class nodes, they represent structural 

relationships between classes, such as is-a and part-of.  When 

the edges connect lingual descriptors they represent operators 

that combine possibility values, i.e., t-norms or t-conorms. 

  

 

 

Figure 1. Descriptive ontology example. 

 

Figure 2 shows an example of a lingual descriptor definition. 

The edges connect feature nodes to the descriptor, they also 

represent t-norms or t-conorms. 

 

 

  

Figure 2. Lingual descriptor definition. 

 

3.2. Task Ontology 

The task ontology can be understood as a dataflow description. 

It represents a processing chain that will somehow use the 

definitions of the descriptive ontology in the interpretation 

process, in order to find occurrences of instances (image 

objects) of the classes of interest. 

Task ontologies are represented by a direct graph, whose nodes 

represent either processes, data sets (of raster images or vector 

data), or object classes; and whose edges indicate the processing 

flow.  

 

Note that, as more than one edge may come out of one node, the 

edges can be numbered, so that the control process will know 

the exact order of processing of the connected nodes. Figure 3 

shows a task ontology associated to the descriptive ontology 

illustrated in Figure 1. 

 

 

 

Figure 3. Task ontology example. 

 

It is interesting to observe that for the same descriptive 

ontology, many different task ontologies may be defined. In 

Figure 4 we show a different task ontology, associated to the 

descriptive ontology illustrated in Figure 1. In this task 

ontology different image segmentations (from different 

algorithms or from a same algorithm with different parameter 

values) are performed for the different classes, and a spatial 

conflict resolution procedure is carried out on the resulting 

objects, based on their membership values.  

 

 

Figure 4. Alternative task ontology. 

 

Figure 5 shows yet another example of a task ontology. This 

time classification is carried out with a machine learning, 

supervised technique. In this case, the classification feature 

space may be defined directly from the features that compose 

the definition of the lingual descriptors associated to the object 

classes, or the user may define other features by configuring the 

parameters of the machine learning procedure.  

 



 

 

Figure 5. Task ontology with machine learning process. 

 

4. CONCLUSIONS AND FUTURE WORK 

In this work we presented a meta knowledge model for 

InterCloud, a distributed object-based image interpretation 

system. The meta model is able to represent descriptive 

knowledge and procedural knowledge, through descriptive 

ontologies and task ontologies, respectively. 

 

In the descriptive ontologies, the characteristics of object 

classes are defined though lingual descriptors, which are later 

specified in terms of descriptor definitions, which associate the 

linguistic terms to concrete, measurable features computed on 

the image segments.  

 

We believe that lingual descriptors represent an abstraction 

level that can facilitate knowledge interchange among users 

tackling similar problems, thus providing a bridge for 

transferability of image interpretation models.  

 

The task ontologies enable the definition of complex processing 

chains, and provide a sensible way to control the image 

interpretation process. 

  

We are currently in the process of detailing the meta model and 

the corresponding graphical user interface, which we plan to 

make available in a future version of InterCloud. 
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