
ENABLING REPRODUCIBLE OBIA WITH OPEN-SOURCE SOFTWARE IN DOCKER
CONTAINERS

C. Knotha∗, D. Nüsta

a Institute for Geoinformatics, University of Münster, Münster, Germany (christianknoth, daniel.nuest)@uni-muenster.de

KEY WORDS: reproducibility, open-source OBIA, conflict damage assessment, containerisation, Docker

ABSTRACT:

While most approaches in Object-Based Image Analysis (OBIA) currently rely on proprietary software, the interest in free and open-
source software (FOSS) for OBIA is growing. This interest stems not only from cost savings, but also from benefits concerning
reproducibility and collaboration. However, technical challenges hamper practical reproducibility, especially when multiple software
packages are involved. In this study, we use the Docker technology to containerise an OBIA workflow in a well-defined FOSS envi-
ronment. Running the analysis inside a container eliminates the need to recreate the original software environment on the executing
computer. We explore the approach using two software stacks (InterIMAGE, and QGIS in combination with Orfeo ToolBox, SAGA
and Python libraries) to perform an exemplary analysis detecting destruction of buildings in bi-temporal images of a conflict area. The
analysis combines feature extraction techniques with segmentation and object-based analysis to detect changes and to distinguish disap-
peared buildings from similarly changed non-target structures. The resulting workflow is published as FOSS comprising both the model
and a ready to use Docker image including all required software and data. The presented solution advances OBIA in the following
aspects: higher transparency of methodology; easier reuse and adaption of workflows; better transferability between operating systems;
complete description of software environment; and easy adoption of OBIA workflows by image analysis experts and non-experts.

1. INTRODUCTION

Openness in conducting research is not a new topic, but there
clearly is a recent trend enforcing transparency and availability
under the terms Open Science1 and Open Access2. All stakehold-
ers in the research process contribute rules, incentives or guide-
lines to foster openness. For example (a) on the funding side,
the EU requires open access as part of Horizon 20203 and builds
the European Open Science Cloud4, (b) on the publishing side,
journals such as Science (Nosek et al., 2015) and Bioinformatics
(Peng, 2009) encourage reproducibility, and (c) researchers them-
selves argue for reproducibility in “Five selfish reasons to work
reproducibly” (Markowetz, 2015) or publish “Ten Simple Rules
for Reproducible Computational Research” (Sandve et al., 2013),
which essentially argue in favour of a proper scientific workflow
simply to be able to reproduce your own results. A core notion
of all of these activities is the ideal to publish data, methods, and
software along with scholarly publications.

A definition of the term reproducibility is far from trivial. It is
even used together with other terms to describe different levels
of recreation. The Vienna Principles’ definition (Kraker et al.,
2016) focuses on traceability, others treat “reproducibility” and
“replicability” either as interchangeable (Gentleman and Lang,
2007) or completely different terms (Goodman et al., 2016).

∗Corresponding author
Note: URLs in this document were last accessed July 1st 2016.

1https://www.fosteropenscience.eu/foster-taxonomy/open-science-
definition

2See http://digital-scholarship.org/cwb/WhatIsOA.htm and
https://open-access.net/DE-EN/information-on-open-access/history-
of-the-open-access-movement

3https://ec.europa.eu/programmes/horizon2020/en/h2020-
section/open-science-open-access

4http://ec.europa.eu/research/openscience/index.cfm?pg=open-
science-cloud

For the remainder of this work, we will use “reproduce” and “re-
producibility” to say that a third party can run the original anal-
ysis using code and data provided by the author of a published
work, and that this execution creates the same processing result
(following a definition by Peng, 2009).

The referenced guides and rules indirectly define general chal-
lenges of reproducibility. Computational sciences, such as GEO-
BIA, face particular challenges. For example the uniqueness of
data (can only be captured once) or processing environments (e.g.
supercomputers) can make real replication of results impossible,
so that trust in the applied methods must be established instead
(Peng, 2011).

To achieve this trust, open sourcing of workflows and the under-
lying software is crucial. While benefits of free and open source
software (FOSS) for business and security have been documented
widely5, a more important aspect of FOSS in science is the po-
tential for evaluation and scientific collaboration. The licensing
models6 of FOSS allow to combine individual contributions of
small functional parts into a bigger solution for a problem at
hand. This modularity at the roots of many open source soft-
ware projects is propagated by the Unix philosophy (Salus, 1994):
Each programme should only provide a specific feature and excel
at it. They must allow (technically and legally) maintenance and
re-purposing by third parties.

A number of publications at GEOBIA conferences over the last
years demonstrate the feasibility of a FOSS approach, for exam-
ple using ILWIS and MultiSpec (Baldina and Grishchenko, 2014)
or R and GRASS GIS (Van De Kerchove et al., 2014). Spe-
cific OBIA FOSS projects exist as well, for example InterIMAGE
(Costa et al., 2010).

When implementing a complex workflow with FOSS, a large
5See for example https://opensource.org/advocacy/

case for business.php and https://opensource.com/business/13/12/using-
open-source-software

6For a quick introduction we recommend http://choosealicense.com/.

https://www.fosteropenscience.eu/foster-taxonomy/open-science-definition
https://www.fosteropenscience.eu/foster-taxonomy/open-science-definition
http://digital-scholarship.org/cwb/WhatIsOA.htm
https://open-access.net/DE-EN/information-on-open-access/history-of-the-open-access-movement
https://open-access.net/DE-EN/information-on-open-access/history-of-the-open-access-movement
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/open-science-open-access
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/open-science-open-access
http://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloud
http://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloud
https://opensource.org/advocacy/case_for_business.php
https://opensource.org/advocacy/case_for_business.php
https://opensource.com/business/13/12/using-open-source-software
https://opensource.com/business/13/12/using-open-source-software
http://choosealicense.com/

number of independent tools are utilised, both visible and invisi-
ble to the user. This hampers reproducibility because of compat-
ibility conflicts between different software packages in different
versions. In this study we present an approach to mitigate this
problem by making the whole analysis including software in spe-
cific tested versions available through containerisation.

The implemented workflow detects destruction in a bitemporal
image subset of a conflict area and is partly based on previous
work (Knoth and Pebesma, 2014). Analysis of conflict damage
is a use case where an open approach is specifically useful, be-
cause non-profit organisations face budget restrictions and, more
importantly, because of the importance of transparency when us-
ing complex analysis techniques in politically sensitive environ-
ments.

The main contribution of this work is a fully reproducible and
open workflow for geographic object-based image analysis (GEO-
BIA). It is based on mainstream IT containerisation technology
and a collection of pieces of FOSS for image analysis and geo-
graphic information systems (GIS).

The following sections describe the image analysis workflow (Sec-
tion 2), how it is implemented with FOSS, and how it is made
reproducible using Docker (Section 3). Finally we discuss the
solution and its challenges (Section 4) and conclude with a sum-
mary and outlook (Section 5).

2. EXAMPLE ANALYSIS - CONFLICT DAMAGE
ASSESSMENT

2.1 Data

The data for our example analysis are two images of a village
in Darfur, Sudan. They are available online as part of a blog
post by the AAAS Geospatial Technologies Project7. The copy-
right holder DigitalGlobe granted permission to re-publish them
as part of this work. The data consists of two preview pictures
of remote sensing imagery showing the village Jonjona (located
roughly at 13.686, 24.979 (latitude, longitude) west of Al-Fashir)
before (December 2004) and after (February 2007) reported at-
tacks in the area (see Figure 1). They were downloaded from the
website in .jpg format, manually georeferenced, resampled to a
spatial resolution of 0.5 metres (approximating the spatial reso-
lution of current commercial very high resolution satellites), and
saved as GeoTIFF files.

2.2 Analysis workflow

The general strategy implemented in this study is to segment the
pre-conflict layer and analyse the resulting segments regarding
their change values using information from the pre- and post-
conflict temporal layers. The analysis workflow can be divided
into three major steps: (i) feature extraction and segmentation,
(ii) change analysis, and (iii) extraction of dwelling objects from
changed objects. First, a principal component analysis (PCA) is
applied to each file in order to compress the highly redundant
spectral information of the three RGB bands to one dimension,
the first principal component. The first principal components are
then used as temporal layers of a bi-temporal data set. The image
objects, as basic elements of the object-based analysis, are cre-
ated using the watershed segmentation algorithm, which is based
on the identification of local extrema (OTB Development Team,
2016).

7American Association for the Advancement of Science,
http://www.aaas.org/page/appendix-darfur-sudan-and-chad-imagery-
characteristics

Figure 1. Example image of a village in Darfur before (December
2004, top) and after (February 2007, bottom) a reported attack.
c© 2016 DigitalGlobe

The segmentation is hampered by the specific structural proper-
ties of the objects of interest. Most of the dwellings have conical
roofs. This results in a heterogeneous spectral response of the
differently illuminated parts. Additionally, the buildings are of-
ten directly attached to fences or walls, so they sometimes poorly
separate from the background. Earlier studies in similar areas
have shown, that mathematical morphology can be used to elim-
inate such interfering features (Sulik and Edwards, 2010, Knoth
and Pebesma, 2014). Therefore, a morphological closing opera-
tor precedes the segmentation to smooth out small and linear fea-
tures. The objects resulting from the segmentation are analysed
for structural differences between the two points in time. The ba-
sis for this change analysis is the difference in mean edge density
per object. It is calculated after execution of an edge detection
algorithm and used as the change attribute.

We apply two methods to extract the changed objects based on
the change attribute: First, a fixed threshold, which can be tuned
manually to best distinguish between changed and unchanged ob-
jects. Second, a k-means cluster analysis on all image objects,
which does not need a predefined threshold. The latter is based
on the assumption that when comparing the change of objects,
disappeared dwellings differ significantly in the change of edge
intensity from unchanged objects. Thus, they can be isolated in
the cluster of highest change values using unsupervised cluster-
ing.

http://www.aaas.org/page/appendix-darfur-sudan-and-chad-imagery-characteristics
http://www.aaas.org/page/appendix-darfur-sudan-and-chad-imagery-characteristics

Besides the change analysis the objects are further investigated
regarding their extent, their shape and their values in the pre-
conflict morphological closing layer in relation to the unfiltered
layer, i.e. the impact of the closing operator. This allows to bet-
ter distinguish between changed dwelling structures and other,
similarly changed objects (e.g. fences). The shape of objects is
computed using the Shape Index (Lang and Blaschke, 2007). It
measures how well an object approximates a circle, i.e. the more
the shape differs from a circle, the higher the shape index value.

Figure 2. Overview of the analysis workflow in the graphical
modeller and the role of the different software packages.

The workflow produces three results (see Figure 2). The first
one is a point shapefile showing the centroids of dwelling objects
detected as changed (disappeared/destructed) by the predefined
threshold. The second output is another point shapefile indicating
locations of dwellings belonging to the cluster of highest change
as determined by k-means clustering (shown in Figure 3). The
third product is a polygon shape file of all segments (changed
and unchanged) where only the distinction between dwellings
and other objects has been made. The change cluster (resulting
from k-means clustering) as well as the computed change feature
for each polygon are stored in the corresponding attribute table of
this shapefile. This third result can be used to understand the two
change detection results and to refine the analysis workflow (e.g.
change number of clusters, adapt predefined thresholds etc.).

Figure 3. Post-conflict image with result of the destruction de-
tection using k-means clustering of the change values (Image
c© 2016 DigitalGlobe).

3. PACKAGING OF THE GEOBIA WORKFLOW

3.1 Introduction

This section describes two software stacks for a FOSS-based im-
plementation of the damage assessment workflow. They are eval-
uated to the extent that the respective implementations allow. The
description is limited to the explicitly used pieces of software and
leaves out the numerous underlying (system) libraries.

3.2 QGIS-based automated workflow

3.2.1 Developing the analysis model One implementation is
based on the FOSS GIS QGIS (formerly known as Quantum-GIS,
see QGIS Development Team, 2016). The Processing Frame-
work included in QGIS (Graser and Oyala, 2015) provides access
to native QGIS algorithms as well as a huge number of geopro-
cessing capabilities of third-party applications without requiring
programming skills. In addition, user-created algorithms written
in Python (Rossum, 1995), and subsequently the processing ca-
pabilities of any Python library, can be added.

The processing framework provides a graphical modeller for easy
integration of the various algorithms into complex analysis mod-
els. These models can then be run as a whole on a selected set of
input, e.g. layers in the QGIS desktop application.

Figure 2 gives an overview of the analysis steps and the involved
software packages in the described workflow (Section 2.2) along
with a screenshot of the corresponding modeller view. The ap-
plied tools comprise Orfeo Toolbox (OTB, see Inglada and
Christophe, 2009) for image processing and segmentation tasks,
native QGIS algorithms e.g. for computing object features based
on the image layers, SAGA GIS (Conrad et al., 2015) for calcu-
lating shape attributes, and a user script performing a k-means
algorithm using SciPy (Jones et al., 2016).

3.2.2 Workspace preparation The user workspace comprises
the directories and files shown in Listing 1. They are stored in a
specific directory structure so that the model executor (described
in the next section) can identify them correctly. The contents of
the workspace are

• a subdirectory data with the two original preview images
and the georeferenced data files in TIFF format

• a Python script file, model.py, calling the actual model us-
ing the QGIS Python API8

• analogous to the Python user models and scripts directories,
a models and a scripts directory containing respectively

– a .model-file with the user model
– a Python-file with a user algorithm

Listing 1. Workspace directory tree (documentation files not
shown).
/workspace
|-- data
| |-- COPYRIGHT
| |-- Jonjona_after.jpg
| |-- Jonjona_before.jpg
| |-- jonjona_pos_conflict_proj.tif
| ‘-- jonjona_pre_conflict_proj.tif
|-- model.py
|-- models
| ‘-- conflict_damage_assessment.model
‘-- scripts

‘-- kmeans_clustering_v2 .3.py

The full workspace is available on GitHub9.

3.2.3 Containerisation of workspace and runtime environ-
ment After the creation of a QGIS workflow with the QGIS
graphical modeller, the next step is packaging all required parts
of the analysis. We use a powerful tool for DevOps10 called
Docker11. It provides lightweight virtualisation to package an
application and its dependencies, for example in cloud infrastruc-
tures.

In this study, we use a Docker image to encapsulate the GEOBIA
workflow with a well-defined software environment. The image
can be executed anywhere where a Docker host environment is
running, including Linux, Windows, and OSX12. The image is
build from a human- and machine-readable definition of the com-
plete environment called Dockerfile. It allows a scripted def-
inition of a Docker image, i.e. installation and configuration of
contained software and files, and consequently a replication of
a runtime environment. When an image is started and running
it is called container. A container can be paused, stopped, and
restarted, or be removed from the host. While not being inten-
tioned for it, Docker is a means to ensure long term reproducibil-
ity of computational research, as demonstrated for example for R
(Boettiger, 2015). A Docker image suffices to capture the data,
software, and runtime environment in a well-defined manner and
facilitates reproducibility.

In our specific case, the Dockerfile contains commands to in-
stall the required software, to copy the workspace into the con-
tainer at the location /workspace, and to call a Bash13 script
to execute the actual workflow. The installation commands rely
mostly on software packages from the Ubuntu14 and UbuntuGIS-
unstable15 repositories. The exception is SAGA, which is in-
stalled from source in a specific version not available in the repos-
itories to solve compatibility issues with QGIS16.

8based on http://docs.qgis.org/testing/en/docs/
pyqgis developer cookbook/intro.html#using-pyqgis-in-standalone-
scripts

9https://github.com/nuest/docker-qgis-model
10http://radar.oreilly.com/2012/06/what-is-devops.html
11http://docker.io
12https://docs.docker.com/engine/installation/
13https://www.gnu.org/software/bash/
14http://archive.canonical.com/
15https://launchpad.net/ ubuntugis/+archive/ubuntu/ubuntugis-

unstable
16See http://hub.qgis.org/issues/13279 for details.

The relevant parts of the main Bash script are shown in Listing 2.
Omitted lines contain mostly logging commands. The main state-
ments copy the models and script files from the workspace to the
required QGIS locations and execute the Python script model.py
with a virtual framebuffer using XVFB17 because the container
does not need a physical display. The copy statements use system
environment variables which are shared between the different in-
volved scripts, for example $QGIS MODELSCRIPT resolves to the
value /workspace/model.py.

Listing 2. Excerpt from the main bash script.
cp $QGIS_MODELFILE

$QGIS_USER_MODELDIR/docker.model
cp $QGIS_SCRIPTFILE $QGIS_USER_SCRIPTDIR

xvfb -run python $QGIS_MODELSCRIPT

The Python script initiates and configures the QGIS application,
for example library paths and logging. Then it creates variables
holding the full paths to input and output objects and runs the ac-
tual model. Listing 3 shows an excerpt from the file. The runalg
function’s first argument, "model:docker", loads the model in
the file docker.model previously copied to the model directory
by the Bash script.

Listing 3. Excerpt from the Python file for model execution: ini-
tiate QGIS and run the model.
app = QgsApplication ([], True)
Processing.initialize ()

processing.runalg("modeler:docker",
inputimage_pre , inputimage_post ,
output_result_threshold ,
output_result_kmeans ,
output_result_unclassified)

3.2.4 Running the container The container can be executed
on any local machine or server if Docker is installed. The image
with the analysis is published on Docker Hub18. Only the first
command shown in Listing 4 is required to run the container, be-
cause Docker downloads images automatically from Docker Hub.

Listing 4. Full reproduction commands: run the container from
Docker Hub and extract the result.
docker run --name jonjona

nuest/docker -qgis -model:knoth -nuest -geobia2016
docker cp jonjona :/ workspace/results

/tmp/jonjona_results

The second command copies the output of the workflow to a di-
rectory of the host machine. Its contents are shown in Listing 5.
It contains a directory with a timestamp of the current execution,
which contains three shapefiles—the actual model output. The
shapefiles can now be inspected by the user or be processed fur-
ther. Figure 3 shows a visualisation of the file result kmeans.shp.

Listing 5. Workspace directory tree after execution (supplemen-
tary shapefile files, i.e. .dbf, .prj, .qpj, and .shx, and workspace
files (see previous Listing 1 not shown).
/jonjona_results
|-- result
| ‘-- 20160706 -122126
| |-- result_kmeans.shp
| |-- result_threshold.shp
| |-- result_unclassified.shp

17https://en.wikipedia.org/wiki/Xvfb
18https://hub.docker.com/r/nuest/docker-qgis-model

http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/intro.html#using-pyqgis-in-standalone-scripts
http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/intro.html#using-pyqgis-in-standalone-scripts
http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/intro.html#using-pyqgis-in-standalone-scripts
https://github.com/nuest/docker-qgis-model
http://radar.oreilly.com/2012/06/what-is-devops.html
http://docker.io
https://docs.docker.com/engine/installation/
https://www.gnu.org/software/bash/
http://archive.canonical.com/
https://launchpad.net/~ubuntugis/+archive/ubuntu/ubuntugis-unstable
https://launchpad.net/~ubuntugis/+archive/ubuntu/ubuntugis-unstable
http://hub.qgis.org/issues/13279
https://en.wikipedia.org/wiki/Xvfb
https://hub.docker.com/r/nuest/docker-qgis-model

3.3 InterIMAGE-based application package

InterIMAGE is another potential candidate for a FOSS-based
OBIA workflow. It provides different segmentation algorithms19

including the advanced and widely used multiresolution segmen-
tation (Baatz and Schäpe, 2000) and operators for calculation of
attributes like shape, texture or topological characteristics (Costa
et al., 2010). A so-called batch mode feature20, available since
version 1.39, allows the automatic execution of InterIMAGE in-
terpretation projects in the form of semantic networks. The net-
works store the classes and operators to be executed. Nüst and
Knoth (2016) demonstrate running the user interface of the latest
available Linux release (1.27) in a Docker container by sharing a
local X11 socket.

However, several issues hinder the implementation of the pre-
sented use case (see Section 2). The software focuses on image
interpretation and not all required algorithms for processing the
image layers (e.g. the edge detection) are available in the ba-
sic package. More importantly, the latest available download for
Linux is outdated21. We were not successful in compiling a later
version of the source code for Linux as part of this work due to a
lack of documentation and community support22. Currently only
Linux is supported as the operating system inside a container,
but support for multi-platform containers (most importantly Win-
dows) is under development23. This limitation is not an issue for
most FOSS projects because they are usually platform indepen-
dent, but a straightforward execution of a InterIMAGE interpre-
tation project within a container is not possible.

4. DISCUSSION

We successfully demonstrate packaging a complete GEOBIA
workflow using FOSS. The created package is transferable be-
tween machines (different host operating systems as well as desk-
top and cloud platforms) and all tools are available free of charge.
Our experiments show that because of the numerous involved
tools in different versions and potential conflicts between them,
containerisation is useful not only for reproducibility by third par-
ties, but also for the original development of an FOSS-based anal-
ysis.

However, the approach still has shortcomings when it comes to
the overarching goal of reproducible research. First, the pre-
sented solution is a one-off effort to containerise a specific work-
flow. It lacks a strict standardisation beyond the docker run

command. Only experienced users can trace the command flow
within the container. The currently used scripts are tailored to
the actual use case, especially in the case of the file model.py.
While most of the file is already generic, namely preparing the
QGIS environment, logging, and clocking statements, the actual
call to the algorithm is specific to the model. This part of the
script should be split up so that only the relevant three to four
lines of code must be provided by the workflow author.

Second, the Dockerfile installs automatically the latest avail-
able versions of software from the repositories. This proofed to

19http://wiki.dpi.inpe.br/doku.php?
id=interimage:operators documentation

20http://wiki.dpi.inpe.br/doku.php?id=interimage:batch processing
21Version 1.27, see http://www.lvc.ele.puc-

rio.br/projects/interimage/download
22https://groups.google.com/forum/#!topic/interimage/924t-uZrAMs
23See https://blog.docker.com/2016/04/docker-windows-server-tp5/

and https://www.docker.com/microsoft

be tricky during development of the use case with incompatibil-
ities or missing features of libraries, resulting in a specific com-
patible version of one software to be installed manually. Soft-
ware can be installed in specific versions, but creating these in-
stall statements manually is not user-friendly. While the used
UbuntuGIS community repository simplifies installation tremen-
dously, the ability to download, build, and install a software pack-
age from source within the Dockerfile was crucial to complete
the use case at hand.

Third, the approach does not enforce best practices for repro-
ducible research, such as versioning scripts, but could easily ac-
commodate them, for example by putting a git repository inside
the workspace directory (Ram, 2013).

Fourth, a general issue is the availability of open data. Especially
in GEOBIA, where very high resolution imagery plays an impor-
tant role in many analyses, the applied images are often not freely
available. In these cases it is not possible to publish the data along
with the analysis workflow and software.

Finally, the applied FOSS solutions, at the current stage, cannot
compete with commercial software packages, such as eCogni-
tion, regarding usability and functionality in OBIA. The avail-
able functions of FOSS tools already provide a substantial set of
algorithms and the analysis is created with a user-friendly inter-
active modeller in a Desktop environment. But the number of
actual OBIA operations in the modeller is limited. They can only
partially be re-created, e.g. by combination of other algorithms.
However, since FOSS tools are easily extensible, the missing
functionality can be contributed as new functions or independent
tools. Therefore, we see a high potential for open-source soft-
ware in OBIA, especially if a growing community of users can
be established, who can become active contributors and lead the
development of new algorithms.

5. CONCLUSION AND OUTLOOK

Docker containers and a combination of established free and open
source GIS and image analysis software facilitate reproducible
GEOBIA. We build and distribute a container to carry all required
software and data in a transparent manner. This is a breakthrough
for creating a transferable and executable package of a GEOBIA
workflow. The presented analysis goes well beyond simple pro-
cessing by successfully integrating a large set of tools into a com-
plex multi-step analysis. The shortcomings discussed in the pre-
vious section are mostly related to usability. Therefore we see the
following potential for future work.

With respect to standardisation, an open standard for packaging
GEOBIA software and workflows would allow to follow similar
approaches with different software stacks. This opens new possi-
bilities for reviews of scientific work and collaboration between
researchers.

The current solution is also mostly useful for users with software
development and Linux experience. User interfaces that are de-
livered to a browser via HTTP can mitigate this limitation and
provide a good user experience across platforms.

There is a need for documentation and ready-to-use templates
for packaging as well as a user-friendly automation of packag-
ing workflows, for example an “Export to Container”-button in
the QGIS workflow modeller. A standardised format would also
allow to create new services to store, share, and execute GEOBIA
workflow packages in cloud infrastructures.

http://wiki.dpi.inpe.br/doku.php?id=interimage:operators_documentation
http://wiki.dpi.inpe.br/doku.php?id=interimage:operators_documentation
http://wiki.dpi.inpe.br/doku.php?id=interimage:batch_processing
http://www.lvc.ele.puc-rio.br/projects/interimage/download
http://www.lvc.ele.puc-rio.br/projects/interimage/download
https://groups.google.com/forum/#!topic/interimage/924t-uZrAMs
https://blog.docker.com/2016/04/docker-windows-server-tp5/
https://www.docker.com/microsoft

With respect to interaction with the container, it would be possi-
ble to pass on parameters or external datasets into the container,
for example via environment variables or mounting directories
as volumes into the container. This way users can manipulate
an analysis’ parameters or quickly apply a complete workflow to
their own data.

Regarding the outputs of the container, the presented solution
lacks clear information about the result of the analysis, besides
the log file and the created output files. More research on improv-
ing the result interpretation is required to enable machine-based
output validation and better result visualisation for users.

But the tools are just one part of the deal: To reach high user-
friendliness and adoption of an approach similar to this demon-
stration, we see a high demand in education of the current and
next generation of OBIA users in programming and open source
technologies. Although there are commonalities across all scien-
tific disciplines, domain specific requirements demand targeted
examples/course material, high-quality specialised FOSS, and best
practises of common use cases. The challenge starts with a defini-
tion of reproducibility specifically for (GE)OBIA (Baker, 2016).
This important next step needs an open discourse in the GEOBIA
community, to which this work intends to contribute.

ACKNOWLEDGEMENTS

This research has has been conducted in the context of the Grad-
school for Geoinformatics24. It has partly been supported by the
project Opening Reproducible Research25 funded by the German
Research Foundation (DFG) under project number PE 1632/10-1.

REFERENCES

Baatz, M. and Schäpe, A., 2000. Multiresolution segmenta-
tion an optimization approach for high quality multi-scale im-
age segmentation. In: J. Strobl, T. Blaschke and G. Griesebner
(eds), Angewandte Geographische Informations-Verarbeitung
XII, Wichmann, Karlsruhe, pp. 12–23.

Baker, M., 2016. Muddled meanings hamper efforts to fix repro-
ducibility crisis. Nature News.

Baldina, E. A. and Grishchenko, M. Y., 2014. Object oriented
analysis of multitemporal thermal infrared images. In: Pro-
ceedings of the GEOBIA 2014: Geographic Object-Based Image
Analysis, Thessaloniki, Greece, pp. 415–418.

Boettiger, C., 2015. An introduction to docker for reproducible
research, with examples from the r environment. ACM SIGOPS
Operating Systems Review 49(1), pp. 71–79.

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Ger-
litz, L., Wehberg, J., Wichmann, V. and Böhner, J., 2015. System
for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci.
Model Dev. 8, pp. 1991–2007.

Costa, G., Feitosa, R., Fonseca, L., Oliveira, D., Ferreira, R. and
Castejon, E., 2010. Knowledge-based interpretation of remote
sensing data with the InterImage system: Major characteristics
and recent developments. In: Proceedings of the GEOBIA 2010:
Geographic Object-Based Image Analysis, Ghent, Belgium.

Gentleman, R. and Lang, D. T., 2007. Statistical analyses and
reproducible research. Journal of Computational and Graphical
Statistics 16(1), pp. 1–23.

24http://www.uni-muenster.de/Geoinformatics/en/

Studies/study_programs/PhD/
25http://o2r.info

Goodman, S. N., Fanelli, D. and Ioannidis, J. P. A., 2016. What
does research reproducibility mean? Science Translational
Medicine 8(341), pp. 341ps12–341ps12.

Graser, A. and Oyala, V., 2015. Processing: A Python Framework
for the Seamless Integration of Geoprocessing Tools in QGIS.
ISPRS International Journal of Geo-Information 4(4), pp. 2219–
2245.

Inglada, J. and Christophe, E., 2009. The orfeo toolbox remote
sensing image processing software. In: Proceedings of the 2009
IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), Cape Town, South Africa, Vol. 4, pp. 733–736.

Jones, E., Oliphant, T., Peterson, P. et al., 2016. SciPy: Open
source scientific tools for Python. http://www.scipy.org/ (27 June
2016).

Knoth, C. and Pebesma, E., 2014. Detecting destruction in con-
flict areas in darfur. In: Proceedings of the GEOBIA 2014:
Geographic Object-Based Image Analysis, Thessaloniki, Greece,
pp. 165–168.

Kraker, P., Kaier, C., Gutounig, R., Vignoli, M., Dennerlein, S.,
Aspöck, E., Schmidt, N., Wandl-Vogt, E., Ferus, A., McNeill, G.,
Steinrisser-Allex, G., Dörler, D., Rieck, K., Heigl, F., imukovi,
E. and Enkhbayar, A., 2016. The vienna principles: A vision for
scholarly communication in the 21st century. Zenodo.

Lang, S. and Blaschke, T., 2007. Landschaftsanalyse mit GIS.
Ulmer, Stuttgart, pp. 241–243.

Markowetz, F., 2015. Five selfish reasons to work reproducibly.
Genome Biology 16, pp. 274.

Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman,
S. D., Breckler, S. J., Buck, S., Chambers, C. D., Chin, G., Chris-
tensen, G., Contestabile, M., Dafoe, A., Eich, E., Freese, J., Glen-
nerster, R., Goroff, D., Green, D. P., Hesse, B., Humphreys, M.,
Ishiyama, J., Karlan, D., Kraut, A., Lupia, A., Mabry, P., Madon,
T., Malhotra, N., Mayo-Wilson, E., McNutt, M., Miguel, E.,
Paluck, E. L., Simonsohn, U., Soderberg, C., Spellman, B. A.,
Turitto, J., VandenBos, G., Vazire, S., Wagenmakers, E. J., Wil-
son, R. and Yarkoni, T., 2015. Promoting an open research cul-
ture. Science 348(6242), pp. 1422–1425.

Nüst, D. and Knoth, C., 2016. docker-interimage: Running the
latest InterIMAGE linux release in a docker container with user
interface. http://zenodo.org/record/55083 (06 July 2016).

OTB Development Team, 2016. The ORFEO
Tool Box Software Guide. https://www.orfeo-
toolbox.org//packages/OTBSoftwareGuide.pdf (27 June 2016).

Peng, R. D., 2009. Reproducible research and biostatistics. Bio-
statistics 10(3), pp. 405–408.

Peng, R. D., 2011. Reproducible research in computational sci-
ence. Science 334(6060), pp. 1226–1227.

QGIS Development Team, 2016. QGIS Geographic Information
System. http://qgis.osgeo.org (24 June 2016).

Ram, K., 2013. Git can facilitate greater reproducibility and in-
creased transparency in science. Source Code for Biology and
Medicine 8, pp. 7.

Rossum, G., 1995. Python reference manual, available at http:
//www.python.org/.

Salus, P., 1994. A Quarter-Century of Unix. Addison-Wesley,
Boston, chapter 7 of part 2, p. 52.

http://www.uni-muenster.de/Geoinformatics/en/Studies/study_programs/PhD/
http://www.uni-muenster.de/Geoinformatics/en/Studies/study_programs/PhD/
http://o2r.info
http://www.python.org/
http://www.python.org/

Sandve, G. K., Nekrutenko, A., Taylor, J. and Hovig, E., 2013.
Ten simple rules for reproducible computational research. PLoS
Computational Biology 9(10), pp. e1003285.

Sulik, J. and Edwards, S., 2010. Feature extraction for dar-
fur: geospatial applications in the documentation of human
rights abuses. International Journal of Remote Sensing 31(10),
pp. 2521–2533.

Van De Kerchove, R., Hanson, E. and Wolff, E., 2014. Compar-
ing pixelbased and objectbased classification methodologies for
mapping impervious surfaces in wallonia using orthoimagery and
LIDAR data. In: Proceedings of the GEOBIA 2014: Geographic
Object-Based Image Analysis, Thessaloniki, Greece, pp. 657–
661.

	INTRODUCTION
	EXAMPLE ANALYSIS - CONFLICT DAMAGE ASSESSMENT
	Data
	Analysis workflow

	PACKAGING OF THE GEOBIA WORKFLOW
	Introduction
	QGIS-based automated workflow
	Developing the analysis model
	Workspace preparation
	Containerisation of workspace and runtime environment
	Running the container

	InterIMAGE-based application package

	DISCUSSION
	CONCLUSION AND OUTLOOK

