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ABSTRACT: 

 

Cabadbaran City is the capital of Agusan del Norte which is located at the north eastern portion of Mindanao, Philippines. Almost 

30% of its land area is devoted to agriculture (mainly rice, corn, coconut, banana, vegetables and abaca). Currently, the city 

government and agriculture office are implementing programs focusing on improving coconut and vegetable productivity, 

controlling banana disease and infestation, and enhancing abaca production industry. In support of decision making, the current 

situation must first be assessed by answering the basic questions what and where through detailed and accurate resource mapping.  

In this study, only discrete LiDAR datasets were utilized. Corresponding orthophotos were used only for training and validation. 

Land cover classification was done using two workflows using Support Vector Machines (SVM) as the classifier. In the first 

workflow, land cover classes were classified using rasterized point cloud metrics such as minimum, maximum, standard deviation, 

skewness, kurtosis, quartile average, mode and median. In the second workflow, point cloud analysis was used to derive additional 

features for classification which was integrated and executed in the same object-based software through Cognition Network 

Language (CNL). The derivations of the additional features were conducted after running an initial segmentation which means that 

the distribution of points was analysed within the delineated objects. Classes that benefited to point cloud-based metrics are mostly 

non-ground agricultural classes namely coconut, mango and palm trees. These classes have obtained increase in accuracies by an 

average of 11.2% using validation sample set 1 and an average of 18.2% using validation sample set 2. Ground classes, particularly 

barren land and rice, appeared to be incompatible to these point cloud metrics as shown by the decrease in accuracies for Methods 2 

and 3 by about 18.1% using validation sample set 1 and about 16.4% using validation sample set 2. Exploring other useful point 

cloud-based metrics and testing on sites with other land cover classes are highly recommended. 

 

1. INTRODUCTION 

Agriculture is vital in every country’s food security. It supports 

the people’s daily needs not only in terms of food but also in 

providing raw materials essential for the production of 

medicines, clothing, and many more. In the Philippines, the 

agricultural sector feeds more than a hundred million citizens 

(Philippine Statistics Authority, 2016) which most of the time is 

said to be unable to provide sufficient supply of goods 

particularly rice. Some of the reasons are the lack of allotted 

area for plantation, scarcity of water during the dry season that 

leads to lower yields and higher production cost caused by a 

number of typhoons that hit the country (Dy, 2015). Because of 

these, there is a need to import goods to fill up these gaps. A 

way to deal this is to monitor and plan the yields and the 

allotment of area for the sector such that the volume of yields 

will fit the intensity of demand. There should also be a way to 

monitor and regulate the conversion of land use from 

agricultural to residential or commercial. In order to do these, 

the sector must know the current status of the crop areas starting 

from the basic questions what and where. What crops are being 

cultivated and where are they situated? These can be answered 

by resource mapping. Resource maps are maps showing specific 

type/s of target land cover/s. A variety of methods can be 

conducted to produce a resource map. In this study, two 

methodologies will be presented using LiDAR technology and 

object-based image analysis (OBIA). 

 

2. RELATED LITERATURE  

2.1 Point Cloud Analysis and Applications 

LiDAR (Light Detection and Ranging) is a form of a remote 

sensing system of acquiring data by radiating a pulsed laser to 

obtain measurements to the earth (National Oceanic and 

Atmospheric Administration, 2015). At a given target, distance 

from the platform can be calculated knowing the speed of the 

laser pulse and the time it takes for the pulse to return to the 

sensor (LiDAR-UK). A GPS (Global Positioning System) and 

Inertial Measurement Unit provide position and orientation 

information to the system respectively (Bao, et al., 2008). The 

output point cloud data consist of 3D coordinates x, y and z and 

Intensity i. Based on these four attributes, various rasters can be 

derived such as Intensity, Number of Returns, and Digital 

Elevation Model (DEM) images  (Carranza, et al., 2014). 

Moreover, from these images, we can further derive height 

textures and metrics. In the study conducted by Qiao and Zhang 

(2009), height and intensity textures were used to classify a 

LiDAR dataset into five classes: cropland, bare land, water 

body, man-made constructions, and sparse tree land. These 

textures include mean, entropy, variance, second moment and 

homogeneity that served as criteria for the Artificial Neural 

Network (ANN) classifier. Aside from land cover mapping, 

LiDAR point cloud can also be used for environmental 

management. One example is how Peterson et al. (2005) 

predicted canopy bulk density (CBD) and canopy base height 

(CBH) for a portion of the Sierra National Forest, Nevada. 

Moreover, they also used LiDAR data for canopy fuel mapping 



 

which served as input for a fire behaviour model (FARSITE). 

Kandrot (2013) tackled a new approach and its advantages on 

coastal monitoring particularly the dynamics of sand dunes 

morphology. More uses of point cloud analysis include urban 

(Harrap & Lato, 2006), disaster mitigation (Disaster Risk and 

Exposure Assessment for Mitigation (DREAM) Program, 

2016), and medical applications (Schultz & Kindlmann, 2013). 

 

2.2 Support Vector Machines (SVM) 

Support Vector Machines (SVM) is a type of supervised 

classification in which a hypothesis space of linear functions in 

a high dimensional feature space (Cristianini & Shawe-Taylor, 

2000). According to Cristianini and Shawe-Taylor (2000), 

SVM algorithm finds a way on obtaining efficient separating 

hyperplanes such that the generalization bounds are optimized.  

 

 
Figure 1.  Simple Illustration of How SVM works as adapted 

from  Burges (1998) 

 

Despite its promising and very strong theoretical background, it 

remained unnoticed in its early publications (Kecman, 2005). 

The user may tweak on its parameters upon using it to certain 

application. These include C or the penalty factor (Alpaydin, 

2014), Epsilon or the value that indicates the percentage or ratio 

of the support vectors to the number of samples (Mattera & 

Haykin, 1999), Gamma which defines the extent of influence of 

a training sample (scikit-learn.org) and Kernel functions which 

are used to project non-linearly separable samples into linear 

separable feature space (Hofmann, 2006). There are four types 

of kernel functions namely Linear, Polynomial, Radial Basis 

Function (RBF) and Sigmoid (McCue, 2009). Kecman 

mentioned in his book section that it is only when practical 

applications yielded excellent results that SVM became known 

and accepted. These applications include digit recognition, 

computer vision and text categorization. For land cover 

classification, Zhang, Lin and Ning (2013) utilized SVM for 

airborne LiDAR point clouds in urban areas. Roli and Fumera 

(2001) introduced and applied SVM with varying parameters to 

multisensory images and compared its performance to 

Multilayer Perceptrons Neural Network and k-NN classifiers. 

Their output classes include sugar beets, stubble, bare soil, 

potatoes and carrots. A data fusion was done by Waske and 

Benediktsson (2007) using multitemporal synthetic aperture 

data and optical imagery. Their proposed SVM-based fusion 

methodology had significantly increased the accuracy results of 

a single run of SVM consisting classes namely arable crops, 

cereals, canola, root crops, grassland, orchard, forest, and urban 

areas. 

3. MATERIALS AND METHODOLOGY 

3.1 Study Area 

Agusan del Norte is situated at the south-eastern part of the 

Philippines. The province’s major crops include rice, corn, 

coconut, abaca, banana and mango (Provincial Agricultural 

Office of Agusan del Norte).  A portion of the municipality of 

Cabadbaran approximately located at 9 ̊ 06’ N, 125 ̊ 34’ E was 

selected as the study site which covers an area of about 6 sq. 

km. It is comprised of land covers built up areas, water body, 

grassland, bare land, rice, corn, non-agricultural trees, coconut, 

mango, banana and oil palm trees. A banana plantation is 

located at the leftmost portion while mango plantations are 

distributed within the study area. Coconut and oil palm trees are 

often located in the same area. Corn parcels contain sparse 

plants but can still be identified. 

 

 
Figure 2. Study Area (Google, 2012) 

 

3.2 Datasets 

   

 
 

Figure 3. Datasets: Orthophoto (left), Point Cloud (right) and 

Point Cloud Perspective View (bottom) 

 

The data used include an orthophoto with 0.5 x 0.5 m resolution 

and a pre-classified LiDAR point cloud (.las) with 2 points per 

sq. km. resolution. The orthophoto contains three bands: Red, 

Green and Blue. The point cloud was pre-classified into general 

classes: ground, vegetation (low, mid and high), and buildings. 



 

 

3.3 Methodologies 

Three classification methodologies were applied and 

corresponding results were compared. The first method utilized 

raster-based derivatives (see Figure 4), the second used point 

cloud-based derivative layers, and the third is a combination of 

the two sets of derivatives. Orthophotos are available but were 

only utilized for the selection of training and validation points 

as this research is on the classification of agricultural cover 

using LiDAR data only.  

 

   

 

   

 

   

 

   

 
Figure 4. Examples of LiDAR Derivatives used 

 

Figure 5 illustrates the classification workflow for method 1 in 

which height and intensity metrics were calculated per specified 

pixel size. A relatively large pixel size of 5 x 5 meters was used 

to be able to feed enough number of points for the computation 

of the metrics (Jerez, et al., 2015) using Lastools. LiDAR 

derivatives include normalized Digital Surface Model (nDSM) 

or the height image, intensity, slope, number of returns, height 

metrics (average, minimum, maximum, standard deviation, 

mode and median or the 50th percentile), and intensity metrics 

(average, minimum, maximum, first returns maximum, last 

returns minimum, standard deviation, mode and median) (see 

Figure 4). These derivatives were then imported in eCognition 

where initial segmentation was done using nDSM to separate 

non-ground from ground features. Non-ground and ground 

objects were further segmented using nDSM and intensity 

respectively until meaningful objects were obtained. 

Meaningful objects indicates no multiple type of feature are in 

the same object. Moreover, minimal over-segmentation (i.e., 

single type of feature were broken into smaller pieces) was 

committed. 

 

Training points were selected using the orthophoto. Separate 

SVM classifications for the two general classes were conducted 

in order to avoid confusion between low and high vegetation 

(Jerez, et al., 2015). The parameters that were used include 

1/(number of dimensions or the derivatives used) for the 

Gamma parameter which is the default value, 200 for the C 

parameter , and RBF kernel function (Carranza, et al. 2014). 

Output final classes include water body, grassland, bare land, 

rice and corn for ground and built up areas, non-agricultural 

trees, coconut, mango, banana and oil palm trees for non-

ground. 

 

Validation samples for the accuracy assessment were then 

selected such that they do not overlap with the training samples 

and the number of samples follows the ratio 70% training - 30% 

validation (Jerez, et al., 2015). From the same reference, 

individual accuracies especially for the agricultural classes were 

examined and necessary improvement was done in order to 

meet the minimum required accuracy of 85% set for 

classification using LiDAR dataset only (no orthophoto).  

 

 
 

Figure 5. Method 1: Using Raster-Based Metrics for Land 

Cover Classification 



 

In the second methodology, height and intensity metrics were 

computed directly from the point clouds per object. Figure 6 

shows the workflow in which deriving the metrics (in blue box) 

were not done prior to the whole classification procedure. The 

same set of ground and non-ground objects were used in the 

first two methodologies to ensure that the differences in the 

output will only be caused by the difference in the computation 

of the metrics. In the third methodology, derivatives from 

Methods 1 and 2 were combined. 

 

 
 

Figure 6. Method 2: Using Point Cloud-Based Metrics for Land 

Cover Classification 

  

Lastly, the output accuracies from the three methodologies were 

compared per class. Two sets of validation samples were 

obtained in order to check the consistency of the results. 

 

 

4. RESULTS AND DISCUSSION 

Final classes include barren, corn, grassland, rice, banana, 

coconut, palm, mango, non-agricultural trees and buildings. The 

classification results for the three methodologies were visually 

examined. To quantify the differences among results, accuracy 

assessment was conducted using two sets of validation samples. 

Trends of the accuracy values were also observed per class from 

method 1 to 3. Figure 7 shows the classification outputs from 

the 3 methodologies. Some portions of the classified area are 

presented in Figure 8.  

 

By visual inspection, differences are not too apparent except for 

rice and barren. Methodologies 2 and 3 have similar 

classification outputs as compared to that of Methodology 1. 

The banana plantation located at the left side was captured by 

the three methodologies and differs at some parts only. At the 

lower right of the classified images, the differences are most 

apparent where barren and rice parcels are mostly located. 

Method 1 had detected the least area of rice parcels and, 

consequently, the largest barren areas. 

 

 

 
 

Figure 7. Orthophoto (upper left) and Classification Results for 

Methods 1, 2 and 3 

 

The top three highest accuracies for validations sample set 1 are 

from corn (1.000 from all methods), banana (1.000 from all 

methods), and grassland (1.000 from Methods 1 and 3) while 

for validation sample set 2 are grassland, corn, coconut, banana, 

and buildings (1.000 from all methods). On the other hand, the 

top 3 lowest accuracies from validation sample set 1 are from 

mango (0.588 from Method), barren (0.661 from Method 2), 

and rice (0.705 from Method). For validation sample set 2, top 

3 lowest accuracies are from rice (0.451 from Method 2), barren 

(0.540 from Method 2), and mango (0.651 from Method 1). 

Method 1 yielded the highest overall accuracy of 0.944 and 

Method 2 yielded the lowest overall accuracy of 0.771. 

 

 



 

 
 

 

 
 

Figure 8. Portion of the Classification Result for  

Methods 1, 2 and 3 

 

 

Observing the trend of accuracies for validation samples set 1 

from Method 1(raster-based) to 2(point cloud-based) (Table 1 

and Figure 9), accuracies of three (Coconut, Mango and Palm 

trees) out of ten classes have increased values, four (Barren, 

Grassland, Rice and Non-Agricultural trees) classes and the 

Overall Accuracy obtained lower values and the remaining 

(Corn, Banana and Buildings) have retained their accuracy 

level. On the other hand, observing the accuracies using 

validation sample set 2 from Method 1 to 2 (Table 2 and Figure 

10),  two classes (Mango and Palm Trees) obtained increase in 

accuracy values, three classes (Barren, Rice and Non-

Agricultural trees) and the Overall Accuracy have obtained 

decrease in accuracies, and five (Grassland, Corn, Coconut, 

Banana and Buildings) have retained their accuracy level. 

 

Comparing the results of processing the two sets of derivatives 

(Method 1: raster- and Method 2: point cloud-based) separately 

to the combined derivatives (Method 3) using validation set 1 

(Table 1 and Figure 9), the classification of the following 

classes improved with Method 3: Grassland, Mango, Palm and 

Non-Agricultural trees. However, Barren land, Rice, Corn, 

Coconut, Banana, Building and the Overall Accuracy did not 

obtain any increase in accuracy. For validation sample set 2 

(Table 2 and Figure 10), accuracy improvement was observed 

for the Barren land, Rice, Mango, Non-Agricultural trees 

classes, as well as in the Overall Accuracy. For the remaining 

classes namely Grassland, Corn, Coconut, Banana, Palm, and 

Buildings, no increase in accuracies were obtained. 

Table 1. Accuracy Results of Validation Sample Set 1 

Validation 1 

Class 
Method 

1 2 3 

Barren land 0.872 0.661 0.620 

Grassland 1.000 0.985 1.000 

Rice 0.935 0.785 0.705 

Corn 1.000 1.000 1.000 

Coconut 0.976 0.979 0.930 

Banana 1.000 1.000 1.000 

Mango 0.588 0.831 0.957 

Palm 0.774 0.864 0.812 

Non-Agricultural Trees 1.000 0.966 0.981 

Buildings 0.851 0.851 0.851 

Overall Accuracy 0.944 0.854 0.829 

 

 
Figure 9. Accuracy Results using Validation Sample Set 1 

 

Table 2. Accuracy Results using Validation Sample Set 2 

Validation 2 

Class 
Method 

1 2 3 

Barren land 0.590 0.540 0.571 

Grassland 1.000 1.000 1.000 

Rice 0.728 0.451 0.583 

Corn 1.000 1.000 1.000 

Coconut 1.000 1.000 1.000 

Banana 1.000 1.000 1.000 

Mango 0.651 0.941 0.891 

Palm 0.877 0.951 0.865 

Non-Agricultural Trees 1.000 0.953 0.968 

Buildings 1.000 1.000 1.000 

Overall Accuracy 0.810 0.771 0.791 



 

 

 

 
Figure 10. Accuracy Results using Validation Samples Set 2 

 

 

5. CONCLUSION AND RECOMMENDATIONS 

Majority of the classes with improved accuracies after applying 

point cloud-based derivatives belong to Non-Ground classes, 

specifically, coconut, mango and palm trees. The use of the 

derivatives on Ground classes in this dataset did not yield 

satisfactory results. Since there are more classes with decreased 

accuracy values upon utilizing point cloud-based metrics, the 

overall accuracy had also shown a decreasing trend in general. 

Although Method 2 and 3 did not perform well on all classes, 

we can still utilize them for Non-Ground classes for higher 

classification accuracy.  

 

For further research, other study sites with varying classes and 

distribution are highly advisable in order to test the 

methodology and see if other factors affect the resulting 

accuracies. Also, try using tree-dominated areas and classify 

them accordingly. Moreover, other metrics can be computed to 

determine which point cloud-based derivatives are much more 

useful in improving the classification results. 
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