Assessing uncertainties associated with digital elevation models for object based landslide delination

Share/Save/Bookmark

Feizizadeh, B. and Blaschke, T. (2016) Assessing uncertainties associated with digital elevation models for object based landslide delination. In: GEOBIA 2016 : Solutions and Synergies., 14 September 2016 - 16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC) .

[img]
Preview
PDF
412kB
Event: GEOBIA 2016 : Solutions and Synergies., 14 September 2016 - 16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC)
Abstract:Digital elevation models (DEMs) are representations of topography with inherent errors that constitute uncertainty. DEMs data are often used in object based analyses without quantifying the effects of these errors. The main objective of this research is to establish a semi-automated object-based image analysis (OBIA) methodology for modelling uncertainty associated with DEMs when applied for locating landslides. In order to assess the uncertainty of DEMs, the Monte Carlo Simulation methodology was employed for evaluation of the effects of uncertainty on elevation and derived topographic parameters. The effect of DEM error is investigated, using stochastic conditional simulation to generate multiple equally likely representations of an actual terrain surface. Accordingly, distributional measures including accuracy surfaces, spatial autocorrelation indices, and variograms were also employed to quantify the magnitude and spatial pattern of the uncertainty. The semi-automated object based rule-sets for landslide delineation were developed based on two approaches a): without uncertainty assessing of DEMs and b): under applying uncertainty assessing of DEMs to examine the probable and possible uncertainties in delineating the landslides and measuring the improved accuracy after minimizing these associated uncertainties. The results of two approaches were validated using a landslide inventory database and very accurate GPS dataset. Results indicated very significant improvement in accuracy of results (> 28 %) when employing DEMs under uncertainty assessment. This research demonstrates how application of this methodology can address DEMs uncertainty, contributing to more responsible use of elevation and derived topographic parameters, and ultimately results obtained from their use.
Item Type:Conference or Workshop Item (Paper)
Link to this item:https://doi.org/10.3990/2.390
Conference URL:https://www.geobia2016.com/
Export this item as:BibTeX
EndNote
HTML Citation
Reference Manager

 

Repository Staff Only: item control page