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ABSTRACT: 

 

The popular multiresolution segmentation (MRS) algorithm is time and memory consuming when dealing with large images because 

it uses the pixel-grid for the initial object representation. In this study, we have tested a new workflow for image segmentation of 

remote sensing data, starting the MRS (using the ESP2 tool) from the superpixel level (using SLIC superpixels) and aiming at 

dramatically reducing the amount of time and computational resources needed to automatically partition relatively large datasets of 

very high resolution (VHR) remote sensing images. Tests were done on Quickbird and WorldView-2 data and the results show that 

the proposed workflow outperforms the traditional approach (MRS starting from pixels). The computational time was reduced in all 

cases, the biggest improvement being from 5h 35min to 13 min, for a WorldView-2 scene with 8 bands and an extent of 12.2 million 

pixels. This also comes with a slight improvement of the geometric accuracy of the extracted objects. This approach has the potential 

to enhance the automation of big remote sensing data analysis and processing, especially when time is an important constraint. 
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1. INTRODUCTION 

The aim of image segmentation is to partition an image into 

relatively homogeneous objects, non-overlapped and spatially 

adjacent (Blaschke, 2010). The pixel-grid is used as the 

underlying representation for many image segmentation 

algorithms, including the popular multiresolution segmentation 

(MRS) (Baatz and Schäpe, 2000). However, pixels are not 

natural entities and are unlikely to match the content of the 

space represented (Fisher, 1997). It would be more natural and 

efficient to work with perceptually meaningful entities that are 

derived from pixels using a low-level grouping process (Ren 

and Malik, 2003; Neubert and Protzel, 2012). To achieve this, 

we can partition an image into superpixels, which are the result 

of perceptual grouping of pixels based on similar characteristics 

(e.g. color) (Neubert and Protzel, 2012). 

 

In computer vision, using superpixels (Achanta et al., 2012) to 

speed up later-stage processing are becoming increasingly 

popular in many applications (Achanta et al., 2012; Neubert and 

Protzel, 2012; Van den Bergh et al., 2012). In remote sensing 

few studies have used superpixels (Thompson et al., 2010; 

Guangyun et al., 2015; Ortiz Toro et al., 2015; Vargas et al., 

2015). Even so, they did not tackle the usage of superpixels in 

order to improve the computational efficiency of segmenting 

remote sensing data. 

 

We have tested an alternative workflow for image segmentation 

of remote sensing data, starting the MRS from the superpixels 

level and aiming at dramatically reducing the amount of time 

and computational resources needed to partition relatively large 

datasets of VHR remote sensing data. This approach is 

compared with the traditional one, starting the MRS from the 

pixel level, regarding the geometric accuracy of the objects and 

the computational time. 

 

The following section (Section 2) describes the dataset used, the 

theoretical background of the superpixels, the workflow of 

generating objects and the accuracy measures. Section 3 

compares the results of the two approaches in terms of accuracy 

and computational time. Section 4 drafts the major implications 

of the results, while Section 5 concludes the main findings of 

our study. 

 

 

2. METHODS 

2.1 Datasets 

Tests were conducted on very high resolution remote sensing 

data (T1, T2 – Quickbird and T3 – WorldView-2). The spatial 

resolution ranges from 0.5 m (T3) to 0.6 m (T1 and T2), 

respectively, as well as the number of bands, between 4 and 8. 

The extent (in pixels) ranges between approx. 4 mil. pixels (T1), 

12.2 mil. pixels (T3) and 12.3 mil. pixels (T2). Test area T1 

covers a dense residential and services area in the city of 

Salzburg, Austria. The T2 test area is comprised of dense 

clustered residential and commercial buildings with large green 

spaces in between. Test area T3 represents a sensitive riparian 

habitat with forests, agricultural fields and water bodies. We 

have used different extents, landscapes and number of bands to 

assess how the computational time is affected by these factors. 

  

2.2 Simple Linear Iterative Clustering (SLIC) superpixels 

Simple Linear Iterative Clustering (SLIC) (Achanta et al., 2012; 

Achanta et al., 2010) have been proven to outperform other 

state-of-the-art superpixel methods, because of its simplicity, 

adherence to boundaries, computational speed and more 

memory efficiency (Achanta et al., 2012). SLIC has only one 

parameter, which is the desired number of equally sized 

superpixels to be generated.  

 



 

SLIC is an adapted k-means clustering, but what it makes it so 

fast and computationally efficient is that SLIC does not 

compare each pixel with all pixels in the scene. For a region of 

approximate size S × S, the distance D (which combines 

distance of color proximity and spatial proximity) is computed 

in a region 2S × 2S around the superpixel center, reducing 

dramatically the number of D calculations. Achanta et al. (2012) 

found out that 10 iterations for superpixels derivation are 

sufficient for most images and, therefore, we are using this 

threshold for SLIC superpixels generation. 

 

The same authors proposed a parameter-free SLIC version 

(SLICO), which generates regular shaped superpixels across the 

scene, regardless of textured or non-textured regions in the 

image, while SLIC is influenced by the texture, generating 

smooth regular-sized superpixels in the smooth regions and 

highly irregular superpixels in the textured regions (Achanta et 

al., 2012). 

 

For generating superpixels, we have used a freely available 

GDAL implementation (GDAL-segment), available on 

https://github.com/cbalint13/gdal-segment. Superpixels were 

generated using SLIC and SLICO algorithms (Achanta et al., 

2012), as implemented in the tool mentioned, with an initial 

size of clustering of 10×10 pixels. We have used this value after 

trial-and-error, in order to avoid an extreme oversegmentation 

or too large superpixels (Figure 1). 

 

2.3 Multiresolution segmentation: pixels vs. superpixels 

One of the biggest issues of MRS is the selection of parameters, 

of which the most important one is the scale parameter (SP). 

Drăguţ et al. (2010) developed Estimation of Scale Parameter 

tool (ESP) to detect optimal scales based on local variance 

graph, using a single layer. Drăguţ et al. (2014) extended this 

approach into an automated tool (ESP2) for multiple layers. The 

ESP2 tool is a fully automated methodology for the selection of 

scale parameters to extract three distinct scales using MRS, 

implemented in the eCognition Developer software (Trimble 

Geospatial). 

 

For reasons of objectivity, we have used the ESP2 tool starting 

from the pixel level, as usual, and starting from the superpixel 

level, using a hierarchical bottom-up region merging approach 

(i.e. starting from an initial level, the next level is generated 

based on the previous one) to derive only the finest level of 

objects (Level 1 of the hierarchy approach of ESP2). 

 

2.4 Segmentation accuracy of the results 

We evaluated the segmentations results by comparing the 

geometries of resulted objects with 50 manually digitized 

reference objects for each test area. We have used 5 measures of 

accuracy: Area fit index (AFI) (Lucieer and Stein, 2002), Over-

segmentation (OS), Under-segmentation (US), Root mean 

square (D) (Clinton et al., 2010) and Quality rate (QR) (Winter, 

2000), with a minimum percent overlap of 50%. In the case of a 

perfect match between the geometries of objects, AFI, OS, US 

and D would be 0 and QR would be 1. The measures are 

implemented into an eCognition tool by Eisank et al. (2014). 

 

Besides geometry comparison, we measured the computational 

time needed for both approaches. For the ESP2 starting from 

pixel level we retain only the time needed to run the tool, while 

for ESP2 starting from superpixel level, we added to the time 

ESP2 needs to run the computational time of generating 

superpixels. 

 

 
Figure 1. Visual comparison of superpixels produced by SLIC 

and SLICO methods, on a subset of T2. The average superpixel 

size in the upper left of the image is 5x5 pixels, in the middle of 

the image is 10x10 pixels and 15x15 pixels in the lower right. 

 



 

 

 

 

Test 
Segmentation results Segmentation accuracy metrics 

Time 
Number of SP Number of objects AFI OS US D QR 

T1 Pixels 1,403,574 69 3,109 0.499 0.560 0.121 0.405 0.414 1min 29s 

 SLIC 13,835 81 2,017 0.388 0.463 0.122 0.338 0.499 27s 

 SLICO 13,906 61 2,757 0.447 0.515 0.122 0.374 0.454 24s 

T2 Pixels 12,696,684 172 4,670 0.174 0.229 0.067 0.169 0.729 2h 42min 40s 

 SLIC 123,153 173 4,204 0.088 0.161 0.079 0.127 0.782 13min 02s 

 SLICO 125,842 148 5,354 0.335 0.386 0.075 0.278 0.584 9min 49s 

T3 Pixels 12,217,001 220 1,632 0.100 0.148 0.052 0.111 0.813 5h 35min 24s 

 SLIC 131,415 212 1,702 0.062 0.124 0.066 0.099 0.823 13min 03s 

 SLICO 121,525 172 2,338 0.223 0.275 0.066 0.200 0.688 10min 46s 

Table 2. Comparison of segmentation accuracy and computational time for the three test areas (T1 to T3), using pixels, SLIC and 

SLICO superpixels, respectively. 

 

3. RESULTS 

All the tests were conducted on a computer station with Intel 

Core i5-4590 CPU (3.30 GHz) processor with 8 GB RAM, 

using a 64-bit Windows 7 operating system. 

 

Generating SLIC and SLICO superpixels is a very fast and 

memory efficient procedure. In the case of SLIC superpixels, 

the scored runtime was 2s for T1, 18s for T2 and 26s for T3, 

while for SLICO was 3s for T1, 34s for T2 and 37s for T3. It is 

obvious that computing SLICO superpixels is a slightly slower 

procedure and this could be mainly because SLICO generates 

regular shaped superpixels across the scene, thus having 

supplementary computational constraints (i.e. compactness) 

(Figure 1). 

 

The complexity of the three test areas was significantly reduced 

by aggregating similar pixels into superpixels. Due to this fact, 

SLIC and SLICO superpixels are making a big difference in 

segmentation, regarding total computational time. Larger the 

scene and bigger the number of bands, bigger the time needed 

for ESP2 to run starting from a pixel-grid (from 1min 29s to 5h 

35min 24s) (Table 2). Runtime of ESP2 starting from SLIC 

superpixels is higher than that of ESP2 starting from SLICO 

superpixels, the difference ranging between 3s for T1 and 3min 

13s for T2. This is mainly because the scale parameter detected 

for the latter case is smaller and therefore the processing of 

ESP2 stops earlier. This is explained by the fact that SLICO 

superpixels have compactness constraints to follow a regular 

lattice and, as a consequence, it can omit meaningful image 

boundaries, increasing the internal heterogeneity of the 

superpixels. SLIC superpixels have reduced the runtime by a 

magnitude of 229% for T1, 1146% for T2 and 2476% for T3, 

respectively. 

The scale parameters for pixel-grid and SLIC superpixels are 

similar. The most evident case is for T3 (220 and 212, 

respectively), where approximately the same number of objects 

were extracted in the end (1632 and 1702, respectively). 

 

In all cases, using SLIC superpixels outperformed the other two 

approaches regarding the geometric accuracy of the final objects 

(Table 2). Compared to the pixel approach, SLIC has better 

values of QR for T1 (0.499 compared to 0.414), for T2 (0.782 

compared to 0.729) and for T3 (0.823 compared to 0.813). The 

only indicator where SLIC had worse values than the pixel 

approach is the US, the difference ranging from 0.001 for T1 

and 0.014 for T3, but this could be considered a negligible 

difference when aiming at considerably improving the runtime. 

The oversegmentation of the scene using SLICO superpixels 

negatively impacts the accuracy measures and, therefore, they 

are better than the pixel approach only in the case of T1 (QR of 

0.454 compared to 0.414), where the number of objects is 

slightly smaller. In test area T1, even if there is a big difference 

in number of objects extracted between pixel approach and 

SLIC superpixels (3109 and 2017, respectively), the US has the 

same value, while OS decrease by 0.1. This could mean that 

SLIC superpixels are better adhering to the boundaries and, 

therefore, creating more meaningful objects than those 

generated by starting from a pixel-grid. 

 

 

4. DISCUSSION 

Using the adapted workflow, we are able to increase the 

maximum extents on which ESP2 for MRS runs. 

Supplementary tests (not shown here) proven that for scenes of 

tens of millions of pixels ESP2 is successfully fast and memory 

efficient when starting from superpixels, while in the case of 

starting from pixels it crashes due to the immense amount of 

resources needed to compute the statistics at the pixel-level. The 

size of the superpixels should carefully be chosen, not to 

worsen the computational efficiency (by generating too small 

superpixels) or to contain more than one class inside a 

superpixel (by having too coarse superpixels).  

 

We have used SLIC and SLICO superpixels because they were 

shown that outperform the other state-of-the-art superpixel 

algorithm (Achanta et al., 2012). In our study, applying MRS 

on SLIC superpixels has proven to be the most efficient in terms 

of geometric accuracy of final objects. One minor drawback of 

using SLIC and SLICO superpixels in MRS is that we introduce 

further parameterization in the process, but as implemented in 

the GDAL-segment tool, the only parameters you have to set is 

the desired size of the generated superpixels, that means how 

finer the generated superpixels should be. 

 

Using VHR images with different characteristics gave us an 

overview of their effects in generating superpixels. For the same 

size of desired superpixels, the larger the extent of the scene and 

higher the number of layers, the higher the computational time. 

But the most important influence over the runtime is the extent 

of the generated superpixels: smaller superpixels will require 

longer time than larger superpixels. 

 

 



 

5. CONCLUSION 

In this paper, we have tested a workflow to efficiently partition 

an image into objects by using SLIC superpixels as the starting 

point for MRS. When compared to the traditional approach 

(starting from pixel-grid), our approach outperformed both in 

terms of geometric accuracy of the extracted objects and 

computational time. This approach has the potential to enhance 

the automation of big remote sensing data analysis and 

processing, especially when time is an important constraint. 
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