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ABSTRACT:

This paper describes a deep learning approach for urban land cover classification in the context of the ISPRS 2D semantic labelling
benchmark. A high spatial resolution digital surface model (DSM) and a true ortho-image over the city Potsdam (Germany) was
used as input dataset for obtaining six target classes. The proposed approach focuses on augmenting the original input dataset with a
combined set of geo-morphometric variables extracted from DSM —including slope/aspect transformation, second derivate of elevation,
compound topographic index and hierarchical slope position—. Furthermore, it uses advanced deep learning architecture provided by
H20 framework which follows the model of multi-layer, feedforward neural networks for predictive modelling. Automatic hyper-
parameter tuning with random search was conducted for model selection. The method comprises five steps: (i) spectral segmentation
of ortho-images; (ii) extraction of relevant geo-morphometric variables from DSM; (iii) multivariate land cover classification; and (iv)
accuracy assessment. The proposed approach was used for classifying a selected ISPRS benchmark tile where a reference map is
available. Thematic accuracy of the proposed approach was assessed using the traditional error matrix and compared with thematic
accuracy of a deep learning classification based only on the original data set (i.e. DSM and multispectral imagery). In addition, the
deep learning classification approach was compared with a random forest (RF) classification using both original and augmented input
dataset. It is shown that: (i) thematic accuracy improves only slightly when geomorphological variables are used to enhance the input

dataset; and (ii) deep neural nets provide a similar predictive power than random forests for urban remote sensing applications.

1 INTRODUCTION
1.1 Machine Learning

Machine learning (ML) is an effective empirical approach for su-
pervised or unsupervised land cover classification (supervised or
unsupervised) . In ML, a comprehensive ’training dataset* of ex-
amples is constructed covering as much of the system parameter
space as possible. Typically, a random subset of the data is put
aside for a completely independent validation. ML is ideal for ad-
dressing those problems where our theoretical knowledge is still
incomplete but for which we do have a significant number of ob-
servations and other data (Lary et al., 2016).

ML algorithms commonly used include artificial neural networks

(ANN), support vector machines (SVM), self-organizing map (SOM),

decision trees (DT), ensemble methods such as random forests
(RF), case-based reasoning, neuro-fuzzy (NF), genetic algorithm
(GA), multivariate adaptive regression splines (MARS). Appli-
cation of these techniques in geosciences and remote sensing is
relatively new but expanding (e.g. Atkinson and Tatnall, 1997;
Brown et al., 2008; Lizarazo, 2008; Atzberger and Rembold,
2013; Huet al., 2015; Langkvist et al., 2015; Liang and Li, 2016).

1.2 Deep Learning

Deep Learning (DL) techniques use neural networks with many
hidden layers. Two options for applying DL are Deep Neural
Networks (DNN) and Deep Belief Networks (DBN). A DBN has
undirected connections between the top two layers (Hinton et al.,
2012). This means that the topology of the DNN and DBN is
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different by definition. The undirected layers in a DBN are called
Restricted Boltzmann Machines. This layers can be trained using
an unsupervised learning algorithm (i.e., contrastive divergence)
that is very fast.

In contrast to DBNs, a DNN is a feed-forward, artificial neural
network that has more than one layer of hidden units between
its inputs and its outputs — and there are no undirected connec-
tions (Hinton et al., 2012). Each hidden unit, j, typically uses the
logistic function (the closely related hyberbolic tangent is also of-
ten used and any function with a well-behaved derivative can be
used) to map its total input from the layer below, z;, to the scalar
state, y; that it sends to the layer above (Hinton et al., 2012).
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where b; is bias of unit j, ¢ is index over units in the layer below,
and w;; is weight on a connection to unit j from unit ¢ in the layer
below.

For multiclass classification, output unit j converts its total input,
x;, into a class probability, p;, by using the ’softmax‘ nonlinear-
ity
exp(z;)
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where k is an index over all classes (Hinton et al., 2012).

A DNN can be discriminatively trained (DT) by back-propagating
derivatives of a cost function that measures the discrepancy be-
tween the target outputs and the actual outputs produced for each
training case. When using the soft-max output function, the nat-



ural cost function C'is the cross entropy between the target prob-
abilities d and the outputs of the softmax, p:

C==Y d;logp;, ©)
j=1

where the target probabilities, typically taking values of one or
zero, are the supervised information provided to train the DNN
classifier (Hinton et al., 2012).

For large training sets, it is typically more efficient to compute
the derivatives on a small, random ’minibatch® of training cases,
rather than the whole training set, before updating the weights
in proportion to the gradient. This stochastic gradient descent
method can be further improved by using a “'momentum* coeffi-
cient, 0 < a < 1, that smooths the gradient computed for mini-
batch ¢, thereby damping oscillations across ravines and speeding
progress down ravines:
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The update rule for biases can be derived by treating them as
weights on connections coming from units that always have a
state of one (Hinton et al., 2012).

1.3 Tree based Learning

Tree based learning algorithms are considered to be one of the
best and mostly used supervised learning methods. Tree based
methods empower predictive models with high accuracy, stability
and ease of interpretation. Unlike linear models, they map non-
linear relationships quite well. They are adaptable at solving any
kind of problem at hand (classification or regression) (Breiman,
2001).

Methods like decision trees, random forest, gradient boosting are
being popularly used in remote sensing problems (Belgiu and
Dragut, 2016). Main advantages of such methods can be sum-
marized as follows (Breiman, 2001): (i) Decision Trees (DTs)
captures non-linear relationship and are robust to correlated fea-
tures, feature distribution, and missing values. However, its per-
formance is usually not very top-tiered. So there are two differ-
ent categories of solutions for this problem, one is through bag-
ging (RandomForest) and the second is through boosting (Gradi-
ent Boosting Machine); Random Forests (RF) are composed of
many trees. Each tree is built on a sample of the features and
on a sample of the observations (to increase variance of trees).
Trees are independent with one another. It is easy to use since it
has very few hyper-parameters to tune. And it runs pretty well
with the default parameters. A main drawback is that it may be
slow when it comes to scoring; and (iii) Gradient Boosting Ma-
chine (GBM) are also based on many trees. A GBM iteratively
learns weak classifiers and adds them to a final strong classifier.
After a weak learner is added, the data is re-weighted: examples
that are misclassified gain weight and examples that are classified
correctly lose weight. Thus, future weak learners focus more on
the examples that previous weak learners misclassified. Trees are
dependent with one another causing it to be not very robust to
noisy data and outliers.

Results from several land cover classification studies (e.g. Pal,
2005; and Lizarazo, 2010) suggest that the RF classifier performs
equally well to SVMs and other ML techniques in terms of clas-
sification accuracy and training time. Such studies also conclude
that the number of user defined parameters required by RF clas-
sifiers is less than the number required for SVMs and easier to
define. On the another hand, only a few number of studies have

applied either DNN or DBN techniques for land cover classifi-
cation (an exception being Lv et al, 2015 and Langkvist et al,
2016). Most studies focuses on ‘scene classification’, that is, giv-
ing each image an unique label according to a set of semantic
categories (e..g. Castelluccio et al., 2015). Experimental results
show that DNN and DBN based methods outperform other clas-
sification approaches and produce homogenous mapping results
with preserved shape details.

1.4 Objectives

This article aims to establish whether urban land cover classifica-
tion obtained from the ISPRS 2D semantic labelling benchmark
(i.e a combination of a true color & infrared orthophoto (TO) plus
a digital surface (DSM)) using a DNN approach is thematically
more accurate than the one obtained using a RF technique. In ad-
dition, potential contribution of terrain-related variables, derived
from DSM, to improve thematic accuracy of land cover classifi-
cation is evaluated.

2 DATA AND METHODS

2.1 Data

2.1.1 Original data set Performance of the proposed deep
learning classification approach was evaluated using the ISPRS
2D semantic labeling benchmark. A high spatial resolution dig-
ital surface models (DSM) and a true ortho-image over the city
Potsdam (Germany), namely the 6 — 11 tile, were used as input
dataset for obtaining six target classes. The ortho-image com-
prises 3 spectral bands in the visible range and 1 in the near-
infrared. Each band is 6000 x 6000 pixels with a spatial resolu-
tion of 0.05 m. The DSM has similar spatial extent and pixel size.
Figure 1 shows: (a) a true colour composition from orthophoto;
(b) a pseudo color representation of DSM.

(a)

Figure 1. Input data set for this classification study: (a) Or-
thophoto’s true colour composition; (b) DSM pseudo-color rep-
resentation.

A Postdam reference map is available for the 6 — 11 tile. It in-
cludes six different thematic classes:

. Tree (green)

. Low vegetation (cyan)

. Clutter/background (red)

. Building (blue)

. Impervious surfaces (white)
. Car (yellow)
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2.1.2 Training and validation data sets Two stratified ran-
dom samples of approx. equal-sized number of points at each
thematic class were selected from the reference map. For the
training step, about 10000 sampling points were drawn (see Table
1). For validation of classification results, about 30000 samples
were selected (see Table 1). At each sampling point a 3x3 win-
dow was considered for both establishing the response value (i.e.
majority thematic class) and input data set values (i.e. mean of
spectral and elevation bands).

Class | Training | Testing
1 1763 3778
2 1612 3639
3 1654 3659
4 1913 3912
5 1791 3798
6 1272 3302

Table 1. Number of training and testing points at each thematic
category.

2.1.3 Augmented data set The original input data set was
augmented using a number of geo-morphometric variables ex-
tracted from DSM. Such variables include slope/aspect transfor-
mation (SAT), second derivate of elevation (CURV), compound
topographic index (CTI), heat load index (HLI), and hierarchical
slope position (HSI). Figure 2 depicts these terrain variables in a
small window of 6 — 11 tile.

Figure 2. Geo-morphometric variables obtained from DSM: (a)
RGB123 ortophoto colour composition ; (b) slope/aspect trans-
formation (SAT), (c) second derivate of elevation (CURYV), (d)
compound topographic index (CTI), (e) heat load index (HLI),
and (f) hierarchical slope position (HSI).

Slope/aspect transfomation was calculated using a simple ratio
(Wilson, 2012):
slope

SAT = , (5)
aspect

Curvature is second derivative of elevation and was calculated

according to Shary (1995):

d*(dz)
dh?

CURV = (6)

CTl is a steady state wetness index. CTI is a function of both the
local slope (tan(B) in radians) and the upstream contributing
area per unit width orthogonal to the flow direction (As in m2)
(Hjerdt et al., 2004):

A?

CTI = ln—tan ( By’ )

HLI is an aspect and slope based terrain metric. McCune and
Keon (2002) *fold‘ aspect and steepness so that ’heat* highest
values are southwest and lowest values are northeast

aspect — slope

HLJ = 2P — 5.0p¢ (8)
aspect + slope

HSI is an index which captures terrain attributes in a hierarchical
way by averaging slope over a number of windows at different
scales (Florinsky, 2012):

> djslope;
=1
HSI =" —— 9)
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2.2 Methods
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Figure 3. Flowchart of land cover mapping stages in this study.

Figure 3 depicts the four-stage method followed in this study:
(S1) Image Segmentation; (S2) Terrain analysis; (S3) Supervised
image classification; and (S4) Accuracy assessment. In the S1
stage, the Kmeans algorithm was applied to produce spectral seg-

mentation into 48 clusters. In the S2 stage, five (5) geo-morphometric

variables (i.e. SAT, CURV2, CTI, HLI and HSI) were obtained
from the DSM. In the S3 stage, DNN and RF classification mod-
els were built and applied using as predictors features extracted
from either the original input data set or the augmented data set.
Original features include mean of Red (R), Green (G), Blue (B)



and Infra-Red (IR) bands within spectral segments as well as
pixel-based DSM values. Augmented features include original
features plus pixel-based geo-morphometric values. After class
prediction, a 13 x 13 majority filter was applied to smooth clas-
sified images. In the S4 stage, accuracy assessment of obtained
thematic images was conducted using the traditional error matrix.

The R system (R Core Team, 2015), a free software environ-
ment for statistical computing and graphics, was used to imple-
ment every stage of the proposed method. Raster and vector data
sets reading, processing and analysis tasks were conducted us-
ing rgdal, sp, raster and rasterVis libraries. DNN and RF model
building and prediction was accomplished using /20 library. Tun-
ing of DNN hyper-parameters was accomplished using a random
search technique. Optimal values obtained include a deep neural
net with five (5) hidden layers using 500, 1000, 2000, 1000 and
500 nodes per respective layer. RF application was conducted
with no tuning technique, that is, using 500 trees, the default set-
ting.

3 RESULTS

Figure 4 shows classification results for different methods corre-
sponding to a small window near to the lower left zone of 6 — 11
tile. This zoom in allows for a better visualization of results.
However, interested readers may access the complete classified
images at https://goo.gl/KogDXO0. As reported in Tables 2, 3,
4, 5 the DNN approach using the augmented input data set ob-
tained better results. Accuracy metrics show that most elusive
categories to map are Tree (class 1) and Low vegetation (class 2)
and that most reachable ones are Clutter / background (class 3)
and Building (class 4).

A close look at Figure 4 and Tables 6, 7, 8, and 9 shows that DNN
and RF techniques obtained similar results from both the original
input dataset and the augmented input dataset. Results also show
that inclusion of geo-morphometric variables in the input data set
improves thematic accuracy only slightly.

Accuracy assessment was based on the computation of pixel-
based error matrices per classification using the testing sample
data set described in Section 2.1.2 and the reference data set with
no boundary (i.e. testing points eventually falling on a bound-
ary were ignored). From those matrices different measures are
derived: per class we compute completeness (recall), correctness
(precision) and F'1 score, and through the normalisation of the
trace from error matrices overall accuracy (OA) values were de-
rived.

Class 1 2 3 4 5 6
1 3043 | 273 20 18 117 55
475 | 2712 7 25 96 18
138 70 | 2803 | 54 177 90
40 39 12 | 3721 32 15
136 186 33 85 3188 | 133
18 5 44 0 57 2435
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Table 2. Error matrix for DNN classification from original data
set. Overall accuracy (OA) is 0.878.

In confusion matrices row direction gives reference values, while
column direction shows the prediction. In precision tables cells
show normalised values with respect to reference values. The
True Positive t,, pixels are derived from the main diagonal el-
ements, while the False Positive f, is computed from the sum
per column, excluding the main diagonal element. Likewise, the
False Negative f, is the sum along the row, excluding the main

Figure 4. Classification results for a spatial subset of 611 tile
of Potsdam data set: (a) reference; (b) orthophoto; (c) result for
DNN on original data set; (d) result for DNN on augmented data
set; (e) result for RF on original data set; (f) result for RF on
augmented data set.

Class 1 2 3 4 5 6
1 3038 | 274 15 29 119 50
448 | 2735 9 30 92 19
119 74 | 2782 | 50 208 96
34 29 10 | 3726 | 42 18
121 192 31 64 | 3224 | 130
16 7 50 1 57 | 2429
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Table 3. Error matrix for DNN classification from augmented
data set. Overall accuracy (OA) is 0.880.

Class 1 2 3 4 5 6
1 2972 | 317 19 42 125 53
635 | 2563 1 46 74 13
123 78 | 2814 | 68 164 86
67 41 10 | 3707 | 25 8
173 149 25 143 | 3175 | 98
11 13 28 2 76 | 2428
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Table 4. Error matrix for RF classification from original data set.
Overall accuracy (OA) is 0.866.

diagonal element. From those values following measures are de-
rived:

tp

Precision =
tp+ fp

10)



Class 1 2 3 4 5 6
1 2993 | 262 13 34 165 54
539 | 2662 3 26 89 12
155 82 | 2786 | 54 181 74
43 40 9 3727 30 10
162 199 28 98 | 3164 | 115
19 10 41 0 69 | 2418
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Table 5. Error matrix for RF classification from augmented data
set. Overall accuracy (OA) is 0.872.

tp

Recall =
eca "t I

an

The Fl-score is defined as the harmonic mean of precision and

recall:
Precision. Recall

b= Precision + Recall (12)
Class | Precision | Recall F1
1 0.790 0.863 | 0.825
2 0.825 0.814 | 0.819
3 0.960 0.841 | 0.897
4 0.953 0.964 | 0.959
5 0.869 0.848 | 0.858
6 0.887 0.951 | 0918

Table 6. Precision, Recall and F1 statistics for DNN classification
from original data set (DNN,,).

Class | Precision | Recall F1
1 0.804 0.862 | 0.832
2 0.826 0.820 | 0.823
3 0.960 0.836 | 0.894
4 0.955 0.965 | 0.960
5 0.861 0.857 | 0.859
6 0.886 0.949 | 0916

Table 7. Precision, Recall and F1 statistics for DNN classification
from augmented data set (DNNgy, ).

Class | Precision | Recall F1
1 0.746 0.842 | 0.791
2 0.811 0.769 | 0.789
3 0.971 0.844 | 0.903
4 0.924 0.961 | 0.942
5 0.872 0.844 | 0.858
6 0.904 0.949 | 0.926

Table 8. Precision, Recall and F1 statistics for RF classification
from original data set (RFo).

Class | Precision | Recall F1
1 0.765 0.850 | 0.805
2 0.818 0.799 | 0.808
3 0.967 0.836 | 0.897
4 0.946 0.966 | 0.956
5 0.855 0.840 | 0.848
6 0.901 0.946 | 0.923

Table 9. Precision, Recall and F1 statistics for RF classification
from augmented data set (RFg,).

4 DISCUSSION

It is worth to have a closer look at classifications obtained in this
study in order to understand why Tree (green) and Low vegetation
(cyan) categories have the lowest accuracies. Figure 5 shows a
small window near top right corner of 6 — 11 tile. It shows: (a)
reference map; (b) DNN classification from augmented input data
set; (c) ortho-photo; (d) DSM. From the ortho-image, it can be
seen that trees have dropped most of their leaves and confound
easily with grass and low vegetation. In fact, by looking through
tree branches it is possible to identify ground objects. Figure
5 also shows that cars (yellow) are well mapped and that small
buildings (red) are poorly mapped.

Figure 5. A closer look at the DNN land cover classification from
the augmented data set: (a) reference map; (b) DNN classification
from augmented input data set; (c) orthophoto; (d) DSM

Method OA mPrecision | mRecall mF1

DNN,, | 0.878 0.881 0.880 0.8794

DNN,., | 0.830 0.882 0.881 0.881
RF,- 0.866 0.872 0.868 0.868
RF,, 0.872 0.875 0.873 0.873

Table 10. Overall Accuracy (OA), Precision and Recall macro
statistics for all classified images

Table 10 summarizes thematic accuracy of results. From matrices
presented in Section 3, it may be stated that, for practical applica-
tions, any of the DNN and RF techniques evaluated here allows
for accurate classifications. However, a relevant discussion topic
is to examine how expensive is each method regarding its use
of computational resources and human effort. On such a matter,
it should be said that this study confirms that DNN needs care-
ful tuning of hyper-parameters as suggested from previous work
(e.g. Hinton et al., 2012). Moreover, DNN seems to be a very un-
stable technique as minor variations in, for example, number of
hidden layers or number of nodes, causes unexpected changes in
model’s behaviour and performance. While this happens to DNN,
RF needs no significant work on parameterisation and works in a
very stable way.

On the another hand, inclusion of geo-morphometric variables
in the input data set did not improve accuracy of results signif-
icantly. This is confirmed by examination of variable impor-
tance ranking reported in Table 11. It should noted that elevation
from DSM and Mean of IR band are the most important variables
in both DNN and RF models. Geo-morphometric variables are
the less important ones while their ranking is different in each



Variable DNN,. | RFgq
DSM 1 1
Mean of IR band 2 2
Mean of G band 3 4
Mean of R band 4 3
CURV 5 8
HSI 6 5
Mean of B band 7 6
CTI 8 10
HLI 9 7
SAT 10 9

Table 11. Overall Accuracy (OA), Precision and Recall macro
statistics for all classified images

method. It should also noted that DSM is a pixel-wise variable
—and this holds for every geo-morphometric variable in this study.

5 CONCLUSIONS

In this article, a new classification method that uses deep learn-
ing techniques for land cover classification from ortho-images
and digital surface models (DSM) was investigated. The clas-
sification results indicate that deep neural networks (DNN) and
random forest (RF) techniques can accurately classify target the-
matic categories. Furthermore, it is shown that neither DN nor RF
outperforms each other method results in terms of thematic accu-
racy. It was also investigated the influence of geo-morphometric
variables, obtained from DSM, on classification. It is shown that
such variables increase thematic accuracy only slightly. Machine
learning techniques examined in this study give very promising
results, particularly the RF algorithm which is very robust, con-
sistent and efficient. Future work will be focused on investigating
causes of unstable performance of the deep learning implementa-
tion used in this study.
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