Efficient sharing of dynamic WSNs

Dennis J.A. Bijwaard? and Paul J.M. Havinga'>?

! Pervasive Systems, University of Twente, P.O. Box 217, 7500 AE Enschede
D.Bijwaard@utwente.nl and P.J.M.Havinga@utwente.nl
2 Ambient Systems, Colosseum 15d, 7521 PV Enschede

Abstract. The Ambient middleware supports real-time monitoring and
remote maintenance across the Internet via wired and mobile wireless
network access technologies. Additionally, the middleware offers easy in-
tegration with third-party applications. Ambient Studio utilizes the mid-
dleware for remote WSN configuration and monitoring. The ConnectBox
utilizes it to monitor and maintain WSNs remotely. This paper describes
the Ambient middleware and compares its efficiency with the existing
messaging protocols used for instant messaging and web services.

1 Introduction

The Ambient middleware enables remote monitoring and maintenance of WSNs,
and makes it easy to use sensor readings in customer applications. The GPRS-
enabled ConnectBox allows deployment of sensor networks in moving vehicles
like trucks. This enables real-time monitoring while goods are in transit. When
there are temporary connection outages, the ConnectBox buffers the sensor mes-
sages and flushes them when the connection is re-established

The Ambient network [2] is self-organizing and consists of two main layers:
an infrastructure layer with a Gateway and MicroRouters that relay messages
across multiple hops, and a layer of SmartPoints that move through the network
and in/out of networks.

This paper describes the Ambient middleware and compares its messaging
efficiency.

2 Ambient middleware

The Ambient middleware enables customers to easily integrate their applications
and to enable remote monitoring and maintenance. The interaction between the
different components is depicted in Figure 1. Note that AmbientStudio and the
ConnectBox share the same Ambient middleware (AmbientMW).

One or more Gateways can be connected via RS232 using the AmbientMW
in a ConnectBox device or AmbientStudio on a PC. The ConnectBox device is
an embedded Linux device that offers Ethernet connectivity towards the wireless
nodes from XML applications, AmbientStudio, or other AmbientMW instantia-
tions.



The AmbientMW offers the Connect API to ease integration with third-party
applications using asynchronous XML messages over a TCP/IP connection (op-
tionally encrypted with SSL). The XML messages are the same Device Driver
Interface (DDI) that are used between the nodes in the WSN, but fully parsed
so they can be easily used in an application utilizing its XML schema (which
enables code generation in for instance Java and C#). When required, a pass
filter can be configured to reduce the type of DDI messages that are forwarded
over ConnectAPI.

To offer flexibility, the ConnectAPI can be started as client and server: The
server allows multiple local or remote applications to connect. The client allows
connecting to a remote host, automatic re-connects, and automatic logging of
messages while disconnected and flushing when the connection is re-established.

The AmbientMW also offers AmbiLink to ease remote monitoring and main-
tenance of sensor networks using asynchronous binary messages over optionally
SSL encrypted TCP/IP connections. Similar to the ConnectAPI, both AmbiLink
client and server can be started with the AmbientMW. This offers the flexibility
to monitor and maintain multiple ConnectBoxes with one or more AmbientStu-
dio instances without loosing messages when client connections are disrupted.
Additionally to DDI messages, also management messages can be sent over both
ConnectAPI and AmbiLink for configuring, opening and closing, serial ports
and remote connections. New message types can easily be added, for instance,
for fetching historical data or changing DDI message filters. Another message
type could be introduced for file exchanging (for instance firmware) with the
WSN, such that the WSN can use its own pace and protocol for exchanging it
with the involved node(s). AmbiLink also supports merging sensor information
from all connected nodes via multiple ConnectBox or AmbientStudio instances.
It can then provide the merged data to multiple applications using the Connec-
tAPI In both AmbiLink and ConnectAPI, message destinations can be unicast,
multicast, and broadcast using wildcards in the destination of messages.

For both AmbiLink and ConnectAPI, conversion between DDI and respec-
tively their binary and XML counterpart was automated. Logging and flushing
is implemented in the middelware for both protocols in order to cache messages
that cannot be sent by the client during connection outage. Server logging and
flushing is not implemented, since sensor messages are usually towards a server
and there is no guarantee that a client will ever reconnect to the server. To re-
duce message loss, the TCP connections were set up such that small messages
were sent without delay and the last sent message is logged until it is possible
to sent the next message. This removed the need for a special acknowledgement
scheme on top of TCP (which already has its own acknowledgements), since a
new message cannot be sent unless the previous one was successfully sent.

3 Messaging efficiency

In this section the efficiency of ConnectAPI and AmbiLink is compared with
existing messaging protocols.



Maintenance

AN AN
A,B,C [ Jmbientstudio A,8,C i’;‘;ﬁf:n’on MicroRouter
a==yRemote = ‘Smart?oint

AmbiLink

>

7T o wall S o wall 22z gFirewall
agaaf itann FroT

L
thernet themet
iConnect onnect
, Box

bo BOX bo

AN N ‘ ‘ AN
Location A Location B Location C

Fig. 1. Ambient connect framework

3.1 Comparing existing methods

Existing methods for messaging over the Internet are the email protocol Simple
Message Transfer Protocol [12] (SMTP) for sending/receiving email, and Instant
Messaging (IM) protocols like Internet Relay Chat [10] (IRC), Protocol for SYn-
chronous Conferencing [1] (PSYC), Session Initiation Protocol (SIP)/SIP for
IM and Presence Leveraging Extensions [7] (SIMPLE) and Extensible Messag-
ing and Presence Protocol [14] (XMPP). Also web-services like Simple Object
Access Protocol [13] (SOAP) and Representational State Transfer [16] (REST),
and peer to peer (P2P) messaging like P2P SIP can be used for message ex-
change over the internet. These messaging protocols can be used over a variety
of transport protocols like TCP and UDP, and can use security protocols like
Internet Protocol Security [11] (IPsec), Secure Socket Layer [5] (SSL) and Trans-
port Layer Security [4] (TLS). Most of the protocols can also provide nomadicity
(i.e. reconnection after connection loss), Mobile IP (MIP) can be used to pro-
vide seamless connectivity when switching networks. Unfortunately, MIP is not
deployed in current networks and would therefore at least require a home agent
and driver software on each involved computer to function.
Criteria for comparing the existing methods:

— Availability: are the required elements widely deployed, or are can they be
easily deployed? Availability is positive when the protocol is generally sup-
ported in the endpoints and intermediate routers, negative when is is hardly
supported on the endpoints and routers. For instance MIP and multicast are
not widely deployed, application-level protocols can often be easily deployed.

— Impact: The impact is high when the routers along the path must be equipped
to support the protocol (denoted as ”dr” for dedicated router), or when the



firewall must be updated to support incoming traffic (denoted as ”df”). The
impact is also high when dedicated clients (denoted as ”dc”) or a dedicated
server (denoted as "ds”) is required. The impact is less when a library can
be used for clients (denoted as ”1¢”), and servers (denoted as ”1s”). Using
for instance XML messages, usually requires a library for parsing it.

— Latency, i.e. are messages forwarded in real-time, or are there inherent de-
lays? For instance request-based mechanisms like web-services require higher
bandwidth and processing time and double that with the required return
messages.

— Reliability: is message loss prevented, or is there a mechanism to prevent
losing messages?

— Reachability: can the Wireless Sensor Networks (WSN) be reached remotely
when there is an Internet connection? For instance (company) firewalls often
block all incoming ports and are not keen on clear-text protocols, a default
Network Address Translation [15] (NAT) router blocks all incoming connec-
tions unless configured with specific forwarding rules.

— Bandwidth: can the protocol work across a limited bandwidth link such as
General packet radio service (GPRS)? For instance verbose messaging like
SOAP could add much overhead and other associated costs across a wireless
link such as GPRS.

— Security: can others inject or obtain messages, or disrupt the service? Can
the protocol easily be encrypted?

The web-service protocols eXtensible Markup Language (XML)-RPC and its
successor SOAP use XML documents for messaging. REST can use both text,
XML and other representations (for a request an URL could suffice). These web-
services all use the request/response model of HTTP. JSON-RPC uses a compact
representation and is one of the few web-service protocols that can also be used
bi-directionally over a socket, i.e. it allows requests, responses and notifications to
be sent asynchronously in each direction over the same connection. When behind
a firewall the other protocols require either opening a firewall port, tunnelling or
polling on a reachable server to receive messages (SOAP could also be used over
SMTP with associated high latency, but then it would not act as a web-service).
Using HTTP Secure (HTTPS) for security increases the latency of the first
message, since the connection needs not only to be set up for each request but also
the security association. The reliability of web-services is generally ok. Multiple
libraries are available for all protocols, however there is no cross-platform C+-+
library available for JSON-RPC (JsonRpc-Cpp is GPLv3 licensed which requires
opening all linked source when releasing). Table 2 compares the popular web-
service protocols.

For messaging over the Internet, a great number of protocols exist. Only a
limited number of these protocols are suitable for integration in applications (i.e.
are an open standard [8]). Most of these protocols are not designed for reliability,
but reachability is good for all of them since they all provide one or more ways
to traverse through firewalls. The messages in these protocols are quite large
because they are text-based, especially SIMPLE and XMPP. Table 3 compares
the popular open messaging protocols.



3.2 Comparing Ambient middleware

The AmbiLink users binary DDI and ConnectAPI uses DDI in XML format for
messaging, for both messaging is asynchronous, meaning that no response is re-
quired like in web services. When an AmbiLink or ConnectAPI client is behind
a firewall, it can still reach its related server on the Internet without having to
reconfigure the firewall. Both AmbilLink and ConnectAPI can be secured with
SSL with the added delay of setting up the security association. The reliability
of the Ambient middleware is ok, it logs and flushes messages when the connec-
tion is temporarily unavailable. AmbiLink only works as part of the Ambient
middleware, ConnectAPI can be used from any program that can send XML
documents over a socket. Table 4 compares the Ambient middleware protocols.

Table 5 compares the number of messages and bandwidth for a number of
protocols in more detail®. Typical HT'TP header size is 256 bytes, the size of XML
and JSON documents are comparable when XML attributes are used instead
of tags (else XML is about 30% larger), a typical size of such a message is
1024 bytes. A typical SOAP envelope adds 172 bytes. Typical AmbilLink binary
sensor messages are approximately 250 bytes long, typical Connect API messages
are approximately 900 bytes long. ConnectAPI messages make heavy use of
XML attributes instead of tags, which make them comparable in size to JSON
messages.

The table clearly shows that the asynchronous messaging of JSON-RPC, Am-
biLink and ConnectAPI saves the return-trip messaging as well as the HTTP
headers. Depending on the setup of server and client, the HT'TP keep-alive can
keep the TCP connection open for a long time. However, usually the keep-alive
timeout is less than a minute, which means more connection setups (and asso-
ciated higher latency) for low-frequency messaging over HTTP. Note that the
typical SOAP messages are around 1500 bytes, so a slight increase would require
an additional TCP packet.

3.3 Bandwidth optimizations

The aim is to use the Ambient middleware protocols across low bandwidth links
like GPRS, in which the download bandwidth varies between 9 and 52 kbit/s,
and upload is usually limited to 18 kbit/s. It is envisaged that also large sites
may want to use GPRS to be independent of Ethernet infrastructure which could
be owned or managed by another party or simply be unavailable in a storage
area. For instance 1000 nodes with 3 sensors (e.g. temperature, humidity and

3 TCP uses 3-way handshake for setup and teardown, the set-up ACK can already
contain part of the message, HT'TP1.1 can use keep-alive which reduces the number
of required TCP connects, TCP message header is 24 bytes, The latency of messages
doubles when there is an explicit response for each message. The table assumes that
each TCP message is acknowledged, where it practice the acknowledgement can be
for a number of them (depending on the rate of transmission). IP header is 24 bytes



Table 1. AmbiLink versus ConnectAPI features

Protocol Usage Transport |Security|Format|Filter |Destination |Merged
WSNs
ConnectAPI|3"-party TCP/IP |SSL XML |header |Broadcast |Using
applications option fields |to all appli-|/multiple
cations clients
AmbiLink |Monitoring &| TCP/IP |SSL binary |per Routing to|At client
maintenance option WSN  |AmbiLink |or server
instance(s)

Table 2. Comparison of web service protocols

Protocol Availability |Impact | Latency |Reachability| Bandwidth | Security
XML-RPC + Is+lc |medium issues medium | HTTPS
SOAP + Is+lc |medium| issues high[9] HTTPS
REST + Is+lc |medium issues depends | HTTPS
JSON-RPC +/- Is+lc | low two-way |low/medium|SSL/TLS

Table 3. Comparison of open messaging protocols

Protocol |Availability| Impact |Latency|Reliability|Bandwidth| Security
SMTP + ds+dc+le| high +/- medium -
IRC + ds+dc+lc| low +/- medium SSL
PSYC - ds—+dc low +/- medium |TLS/SSL
SIMPLE +/- ds+dc+le|medium|  +/- high TLS
XMPP + ds+dc+lc|medium|  +/- high TLS

Table 4. Comparison of Ambient middleware protocols

Protocol Availability| Impact |Latency|Reliability|Bandwidth|Security
AmbiLink + ds+dc low + low SSL
ConnectAPI + ds+dc+lc| low + medium SSL

Table 5. Comparison of Bandwidth (in bytes) & latency for N message exchanges, and bandwidth for N=10

TCP/IP HTTP request response typical bandwidth

headers headers messages messages message size N=10 and
Protocol 48 bytes |256 bytes 1 TCP connect
XML-RPC 54+4N..9N N*2 N*XML N*XML XML=1024 27760
SOAP 54+4N..9N N*2 N*(envelope+XML) |N*(envelope+XML)| envelope=172 36790
REST 5+4N..9N N*2  |N*(URL|XML]|other) | N*(XML|OK|other)| URL|OK=100 19000
JSON-RPC [5+2N..544N 0 N*JSON N*(optional JSON) JSON=900 10200..20160
AmbiLink 542N 0 N*AmbiLink 0 AmbiLink=250 3700
ConnectAPI 542N 0 N*ConnectAPI 0 ConnectAPI=900 10200




tilt) sending a message every 5 minutes yields an average rate of 10 messages
per second?.

For 10 AmbiLink messages per second® that would yield a bandwidth of
2500 bytes/s = 20 kbit/s. So, also AmbiLink could certainly use compression
for bigger sensor networks over GPRS. A simple gzip[3] on a binary message
gives a compression factor of 1.6 on AmbiLink messages. Compressing a group
of messages, e.g. 4 at a time gives compression rate of 4, 25 at a time gives a
compression rate of 8. So it would make sense to compress a group messages (e.g.
all messages to be send in a second) when possible, this would also reduce the
overhead on the TCP/IP level, but will increase the message latency. AmbiLink
messages could also be reduced in size by shortening them or using a generic
compressing on string values in these messages that are now sent as UTF-8.
Huffman coding [6] would be a candidate for this, an alternative would be a
look-up table for commonly used attribute names.

Sending 10 ConnectAPI messages per second would require a bandwidth
of 70 kbit/s. Compression of these XML messages would thus be required for
using ConnectAPI across GPRS with bigger networks. Compression with gzip
of a temperature message achieves a compression factor of 1.8. Compressing a
group of 4 messages yields a compression factor of 3, compressing a group of 25
messages yields a compression factor of 18. Some more can be saved by stripping
redundant information from the Connect API messages and shortening the XML
tag and attribute names. A large part of these attribute and tag names come
from the DDI descriptors, so shortening them in these descriptors will reduce
the bandwidth.

4 Conclusion

The Ambient middleware utilizes the DDI framework that allows any resource
in the system to be configured and accessed remotely. This paper compared the
efficiency of the middleware messaging with existing methods and describes how
it can be further improved.

References

1. Psyc instant messaging. http://about.psyc.eu/, Last visited March 2011.

2. Ambient systems. http://ambient-systems.net, Last visited August 2011.

3. P. Deutsch. GZIP file format specification version 4.3. RFC 1952, Internet Engi-
neering Task Force, May 1996.

4 note that these message rates are only required when full sensing history is required,
else it is more practical to configure alarms in the SmartPoint on specific sensing
conditions

5 The amount of messaging depends on the number of SmartPoints, its reporting
period or alarm thresholds, and scale of the network (current maximum is 64 infras-
tructure nodes)



10.

11.

12.

13.
14.

15.

16.

. T. Dierks. The transport layer security (tls) protocol version 1.2. RFC 5246,
Internet Engineering Task Force, Aug. 2008.

A. O. Freier, P. Karlton, and P. C. Kocher. The ssl protocol version 3.0. http:
//www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt.

D. A. Huffman. A method for the construction of minimum redundancy codes. In
Proc. IRE 40, pages 1098-1101, 1952.

IETF. The simple working group charter. http://datatracker.ietf.org/wg/
simple/charter/.

ITU-T. Open standard. http://www.itu.int/en/ITU-T/ipr/Pages/open.aspx.
M. B. Juric, I. Rozman, B. Brumen, M. Colnaric, and M. Hericko. Comparison of
performance of web services, ws-security, rmi, and rmi-ssl. Journal of Systems and
Software, 79(5):689 — 700, 2006. Quality Software.

W. Kantrowitz. Network questionnaires. RFC 459, Internet Engineering Task
Force, Feb. 1973.

S. Kent and K. Seo. Security architecture for the internet protocol. RFC 4301,
Internet Engineering Task Force, Dec. 2005.

J. Klensin. Simple mail transfer protocol. RFC 5321, Internet Engineering Task
Force, Oct. 2008.

N. Mitra and Y. Lafon. Soap specificiations. http://www.w3.org/TR/soap/.

P. Saint-Andre. Extensible messaging and presence protocol (XMPP): core. RFC
3920, IETF, Oct. 2004.

P. Srisuresh and M. Holdrege. IP network address translator (NAT) terminology
and considerations. RFC 2663, Internet Engineering Task Force, Aug. 1999.

S. Tilkov. Introduction to rest. http://wuw.infoq.com/articles/
rest-introduction.



