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ABSTRACT 

Coastal wetlands have, for many decades, fascinated ecologists and geomorphologists alike. The existence of terrestrial vegetation 
communities in highly saline and hydraulically extremely dynamic environments has provided an ideal opportunity to study both 
ecological adaptation mechanisms to physical stressors as well as the importance of vegetation to landform evolution. In recent years, 
however, the importance of understanding the linkages between the biological and physical factors that control coastal wetland 
functioning and evolution has been brought into focus within the conservation, engineering, and policy sector. This is largely the result 
of a rising awareness of the value of coastal wetlands resulting from the services they provide to society. Those services include their 
role as natural sea defenses, a role that is becoming increasingly significant in the context of ever increasing coastal population 
densities alongside environmental pressures (e.g. sea level rise and increasing storm frequencies) arising from climate change. This 
paper reviews how, over the past quarter of a century, advances in field, laboratory, and numerical modeling approaches have made 
particular inroads into the quantification of the sea defense role of coastal wetlands. It is becoming increasingly clear that the sea 
defense function itself is complex and highly context dependent. Although there is now an urgent need for improved ecologically-
informed engineering solutions, these are unlikely to be successful without future research finding appropriate ways of scaling up 
hydraulically important parameters to the landscape scale and defining the physical and biological process thresholds that control the 
continued provisioning of the sea defense function of coastal wetlands in the face of potential extreme events and sea level rise.  
 

 

INTRODUCTION 

Coastal wetlands exist on most of the world’s coastlines and 
their value has been brought to the attention of national and 
international conservation bodies through the recognition of the 
ecosystem services they provide [MEA, 2005; UKNEA, 2011]. 
While coastal wetlands have long been the focus of academic 
study, this recognition of their societal values, the increasing 
human pressures faced by, and climate change impacts on, these 
environments have been the catalyst for a stronger focus of coastal 
research on the linkages between biological and physical 
processes within coastal wetlands in recent years [Allen, 2000; 
Gedan et al., 2010; Spencer and Möller, 2012].  

Coastal mangrove and saltmarshes provide a range of ecosystem 
services, with the UKNEA [2011] identifying particularly their 
provisioning (e.g. agricultural), climate regulatory (e.g. carbon 
sequestration [Chmura et al., 2003]), and hazard regulatory (e.g. 
flood defense and wave dissipation [Gedan et al., 2011] functions. 
Underpinning these particular functions are a range of ‘supporting 
services’, such as primary production, soil formation, water 
quality regulation, etc. [Beaumont et al., 2008]. The assessment 
(and quantification) of all of these functions requires a detailed 
understanding of bio-physical linkages within the wetland 
systems, but particular linkages become important with respect to 
particular services. The potential for individual services to exist in 
‘trade-off’ relationships with other services must thus be kept in 
mind when focusing on any individual service.  

This paper focuses on the importance of recent research into the 
bio-physical linkages within coastal wetlands, both saltmarshes 
and mangroves, for the assessment of the particular service of 

flood and storm protection. In doing so, several important bio-
physical linkages that determine the continued existence of coastal 
wetlands in particular environmental contexts are only briefly 
highlighted, but the reader is referred to the wealth of existing 
literature that addresses these wider controls on 
saltmarsh/mangrove functioning [Allen, 2000; Allen and Pye, 
1992; Woodroffe, 2002]. 

THE NATURE OF BIO-PHYSICAL LINKAGES 
IN COASTAL WETLANDS 

Coastal wetlands exist in the upper intertidal zone, characterized 
by halophytic vegetation communities and regular tidal 
inundation. While saltmarshes and mangroves differ markedly in 
vegetation structure, landform development, and geographical 
distribution (mangroves being restricted to the tropics [Woodroffe, 
2002]), both types of wetland typify what can be seen as the most 
fundamental bio-physical linkage: vegetation mediates the coastal 
morphodynamic principle linkage between hydrodynamics and 
sediment transport through its modification of water flow paths 
and currents and sediment provision, capture, and retention (Fig. 
1). Within this general relationship, it is important to remember 
the fundamental difference in the time-scale over which biological 
controls operate (generally beyond the seasonal time-scale) 
compared to the time-scale of hydrodynamic processes (seconds 
(e.g. waves) to seasonal (spring-neap tidal cycles)). Thus, over 
short, instantaneous  time-scales (waves and tidal current flows), 
the presence of biota plays a rather passive part (i.e. providing an 
obstruction to currents or waves), while over longer, lagged, 
geomorphological time-scales (> annual), it becomes an active 
component of the dynamic morphological evolution of the system 
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reduction from incident waves (H0) to waves a certain distance (x) 
across the wetland can be expressed as a function of the bulk drag 
coefficient of the entire canopy (CD), average plant stem diameter 
(d), average stem spacing (∆s), water depth (h), and incident wave 
height (H0):  
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Based on field measurements gathered by observing the 

reduction of boat generated waves over Spartina alterniflora 
marshes in Chesapeake bay, a value of 5 was determined for CP as 
leading to the best prediction of observed attenuation. Most 
numerical approaches towards representing the interaction 
between plants and waves involve the incorporation of a plant-
dependent drag coefficient of a similar nature (and its inverse 
relationship to the Reynolds number [see e.g. Asano et al., 1992]) 
and this approach has since been expanded by, for example, 
Mendez and Losada [2004] with validation and calibration against 
results from laboratory experiments with artificial kelp.   

More recently, however, alternative algebraic model 
formulations suggest that, for highly flexible vegetation at least, 
the resistance resulting from the presence of a group of plant 
elements can be as much as four times that derived from a simple 
summation of the drag imposed by individual stems [Anderson et 
al., 2011].  

Tsunami protection 
Although mangroves have been thought to act as coastal 

protection in a more general sense, the Asian tsunami of 2004 
caused much debate about their actual effectiveness as tsunami 
protection and the means by which this is achieved. Anecdotal 
evidence abounds as to the protection that was afforded by 
fringing mangrove areas to landward lying communities 
[Danielsen et al., 2005; Baird and Kerr, 2008], but the sudden and 
unpredictable nature of tsunami events as well as the large canopy 
size of mangrove forests makes this effect less easy to study by 
field and physical model approaches. 

The long length and period and high velocity (430km, 37s, and 
200 ms-1 in the case of the 2004 tsunami [Spencer, 2007]) mean 
that the impact of a tsunami wave on coastal vegetation differs 
significantly from that of storm generated waves or raised water 
levels under a meteorological surge. Such waves generate extreme 
wave run-up in very short periods of time upon arrival at the coast 
(up to 50m run-up above mean sea level (MSL) near the 
earthquake epicenter in Sumatra in 2004 [Spencer, 2007]). 

Under such extreme hydrodynamic impact, mangrove 
vegetation itself can suffer significant damage (as it did in 2004 
[see Dam Roy and Krishnan, 2005]) and, while, in the process of 
suffering this damage, water levels and flows may well be 
reduced, the destruction of the vegetation leaves the coast more 
vulnerable to high wave action than before the event.  In addition, 
the debris created by mangrove destruction, interacts with the flow 

of water during the event, potentially blocking or diverting water 
flows. Teo et al. [2009], in their attempt to model the effect of 
mangrove vegetation on a tsunami, describe a two-fold approach 
of (i) increased drag (friction) as introduced by mangrove 
presence, and (ii) the effect of the mangrove in blocking the flow 
of water due to the specific ‘porosity’ of the mangrove forest. The 
likelihood of mangrove damage during the passage of a tsunami, 
however, creates a difficulty in modeling the sea defense function, 
as both friction and blockage effects are likely to change during an 
individual event. 

Bearing these difficulties in mind, however, existing studies 
suggest that key controls on the efficiency with which mangroves 
attenuate tsunamis are bathymetry and coastal configuration and 
mangrove species (and species composition) [see Spencer and 
Möller, 2012]. Thus, Hiraishi and Harada [2003], for example, 
modeled a decrease in the maximum flow pressure (in N m-2) with 
increasing mangrove tree density, using data from the 1998 
tsunami in Papua New Guinnea.  

FUTURE CHALLENGES 

Much progress has been made in recent years on better 
understanding bio-physical linkages within coastal wetland 
systems. The disciplinary boundary between ecological studies 
into coastal wetland functioning and geological and 
geomorphological studies into landform evolution has become less 
divisive in the context of the growing recognition of ecosystem 
service provisioning by wetlands. An increasing number of studies 
now appreciate the tight linkage between the presence of 
vegetation and benthic fauna and the water and sediment fluxes 
through and across the wetland system. Arguably, two key 
challenges remain, however, regarding our understanding of how 
bio-physical linkages affect the sea defense function of coastal 
wetlands.  

Firstly, there is the issue of scale-dependency of the varying 
marsh characteristics that determine coastal protection functions. 
At small spatial scales of 1-10m, the effect of wetland surfaces on 
wave dissipation, for example, can be understood as a function of 
parameters that can be recorded at discrete and distinct locations 
along the cross-shore profile (notably vegetation type, structure, 
and density, as well as water depth and incident wave energy). At 
larger spatial scales of 10-100m wave refraction and diffraction 
through surface topographical features (creeks and salt pans for 
example) are likely to become equally important or at least cannot 
be ignored. At those larger scales, however, it is still unclear how 
vegetation type, structure, and density might be most suitably 
parameterized and measured in practice (so as to link them to the 
wave dissipation effect), at least where vegetation cover is patchy 
and non-uniform. How best to aggregate those vegetation 
characteristics relevant to the wave dissipation function of coastal 
wetlands in patchy communities (such as those typical of mature, 
mixed European salt marsh communities) at the larger, marsh-
wide, scale remains a fundamental challenge for future research. 

Secondly, growing evidence from extreme events such as 
hurricanes in the Gulf of Mexico (in the case of surge and wave 
dissipation) and the Asian tsunami, illustrates the importance of 
the quantification of process thresholds or ‘tipping points’. Such 
thresholds can be conceptualized as describing the switching from 
a system in which the biological elements act to mediate 
hydrodynamic energy (such as the reduction in surge elevations, 
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flow velocities, or wind generated waves) to one in which the 
presence of biological elements enhances the erosive impact of 
water flows (such as in sparsely vegetated marshes with high 
incident wave energy (Fig. 5) or where mangrove debris adds to 
the destructive impact of tsunami waves propagating inshore). 
Any serious incorporation of bio-physical linkages into coastal 
management plans requires some assessment of the likelihood 
with which such process thresholds may be exceeded within a 
given time frame and further research is thus required to identify 
where those process thresholds lie. 

Thus, while much progress has been made in understanding bio-
physical linkages in saltmarsh systems, for this knowledge to be 
used successfully in predictive models that evaluate the sea 
defense function of coastal wetlands for the purpose of its 
incorporation into coastal management approaches, progress in 
these two areas is now needed. 
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